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Abstract: The relationship between stability and complexity of an ecosystem has been one of the main issues in com-
munity ecology. In such ecosystems, a food web is one of the most complex biological networks in nature, and has been
focused on by field and theoretical ecologists. We consider a food web model represented by the Lotka-Volterra equation
with hierarchically ordered random interspecies interactions, and show that the model has a class of dynamic stability,
and that an arbitrary number of species can coexist in it.

1. INTRODUCTION
Food webs are among the largest and most complex

of biological networks, in which a vast number of species
coexist stably. The condition of such coexistence of many
species has been a controversial issue [1] since studies
of random community models revealed that diversity and
complexity tend to destabilize community dynamics [2,
3]. Recent theoretical studies, for example, have clari-
fied the stabilizing factors of random community models:
omnivores (higher connectance) [4, 5], weak interactions
[6], antisymmetric prey-predator relationships [7, 8], for-
aging adaptations [9], evolution [10] and network struc-
tures [11].

This paper intends to give another example of a stabi-
lizing factor in a random community model: the hierar-
chical structure of a food web. In Sec.2, general commu-
nity dynamics will be introduced, together with the con-
cept of dynamic stability (persistence). Then, in Sec. 3,
we introduce a food web model represented by the Lotka-
Volterra equation (LVE) with hierarchically ordered ran-
dom interactions, and show that they have an average
Lyapunov function, that their dynamics are persistent, and
that an arbitrary number of species can coexist after ex-
tinctions of at most half of the species.

2. DYNAMIC STABILITY
Let us first consider a widely adopted model of com-

munity ecology represented by the so-called N -species
generalized Lotka-Volterra equation (LVE) [12]

dyi

dt
= yi(ri +

N∑

j=1

bijyj) (1)

for the abundance yi(t)(∈ [0,∞]) of species i (= 1, 2,
. . . , N) where bij and ri denote the interspecies interac-
tion between species j and i, and the intrinsic growth rate
of species i, respectively. One of the main purposes of
the present study is to classify the behavior of Eq. (1) de-
pending on the set of parameters {bij} and {ri}, and to
find a stability condition of the solution.

We then introduce the important concept of the dy-
namic stability of nonlinear equations such as the LVE.
For all species i if there is a positive constant δ which

satisfies

δ < lim
t→+∞

inf yi(t), (2)

the system is permanent [12]. In the case of δ = 0 it
is strongly persistent. Permanence and persistence are
not classical concepts for stability of a fixed point but are
concepts for the trajectory of the dynamics neighborhood
of the phase space boundary. Eq. (2) denotes that any
arbitrary perturbation less than δ never causes extinction
of a species, that is, the boundary is a repeller type one.

Note that the evolutionary stable strategy (ESS) and
the Nash equilibrium in the context of the dynamical
game theory, on the other hand, are concepts for a static
stability condition of a fixed point. The ESS implies
global stability of a fixed point, which is useful informa-
tion on the behavior of the dynamics. There are, however,
games without an ESS and games with multiple ESSs,
where the ESSs are on the boundary (one or more species
extinct (yi = 0)). It should be noted that a unique ESS
is, in general, not expected for a large system (N # 1)
with complex interactions. This means that more or fewer
extinctions are inevitable for the LVE with many species
and complex interactions.

Another informative concept is the saturated fixed
point [12]. A fixed point p is saturated if a function
αi(y) ≡ ri +

∑N
j=1 bijyj satisfies

αi(p)

{
= 0 for pi > 0,

< 0 for pi = 0.
(3)

The LVE has at least one saturated fixed point. Let us
call a species with positive abundance at a saturated fixed
point pi > 0 a persistent species and a set of such species
P = {i|pi > 0} a persistent set. The number of persis-
tent species, i.e., the diversity of the ecosystem, is given
by S ≡

∑N
i=1 θ(yi) where θ(z) = 1 (z > 0); = 0 (z ≤

0) is the step function. It is known that the time average
of the persistent species converges to the saturated fixed
point [12]:

lim
T→∞

1
T

∫ T

0
yi(t)dt = pi (i ∈ P ). (4)

3. MODEL
We here study a general food web model represented

by the LVE (1) with hierarchically ordered interspecies
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interactions:

bii = 0, (5)
bij = −bji, (6)
bij < 0 < bji (i < j), (7)

that is, the matrix B = {bij} is antisymmetric and the up-
per (lower) triangular elements of B take negative (pos-
itive) values. In the context of ecology, this type of B
denotes that every lower-ranking species i is preyed on
by any higher-ranking species j(> i), that is, an omnivo-
rous species.

Flows of the LVE are, in general, uniformly bounded
if the diagonal elements bii are all negative. On the other
hand, if bii = 0, they are not always uniformly bounded
and one species often explodes. If bii = 0 and ri = 0
for all i, only the top predator N can survive and other
species become extinct [13].

Let us consider the replicator equation (RE) [12]
dxi

dt
= xi(fi − f̄)

(i = 1, 2, · · · , M ≡ N + 1) (8)

fi ≡
M∑

j=1

aijxj (9)

f̄ ≡
M∑

i=1

fixi, (10)

which is transformed from the LVE (1) with the antisym-
metric interactions (5) and (6) by the transformation [12]:

yi = xi/xM (i = 1, 2, · · · , N), (11)
ri = aiM − aMM , (12)
bij = aij − aMj , (13)

Since the flows of the LVE and the transformed RE are
homeomorphic [12], we can study the transformed RE
instead of the LVE. The RE is, moreover, more tractable
when we execute numerical simulations because the pop-
ulation density xi(t) is uniformly bounded (0 ≤ xi(t) ≤
1) by definition, while yi(t) of the LVE sometimes ex-
plodes and the simulation breaks down. It is known that
the total population density is conserved at all times as∑M

i=1 xi(t) = 1, and, therefore, the trajectory of the dy-
namics (8) is bounded in the simplex

∑M
i=1 xi = 1.

The interaction matrix A = (aij) of the transformed
RE is ”quasi-antisymmetric” (antisymmetric except for
the M -th row and the M -th column):

aij = −aij , aii = 0 (i, j = 1, 2, . . . , N) (14)
aiM = ri, aMi = 0, aMM = 0, (15)

which is similar to the ”almost” skew-symmetric matrix
[14].

Because the species M does not have an intraspe-
cific interaction (aMM = 0) nor has interactions from
any other species (aMi = 0), its fitness is always zero:
fM =

∑M
j=1 aMjxj = 0. The average fitness f̄ , how-

ever, depends on time, and the population density xM (t)

is a variable in time. Let us term the species M an ”envi-
ronmental” species.

4. RESULT
The main result is the simple extension of the theorem

for the RE with antisymmetric interspecies interactions
[7].

Theorem 1. For the LVE (1) with zero infraspecific com-
petition (5) and antisymmetric interspecies interactions
(6) and the transformed RE (8) with quasi-antisymmetric
interactions (14) and (15), both systems of the persistent
species are strongly persistent.

Proof. Since the average fitness f̄ is of the form

f̄ =
M∑

i=1

M∑

j=1

aijxixj

=
N∑

i=1

N∑

j=1

aijxixj +
M∑

i=1

aiMxixM

+
M∑

j=1

aMjxMxj

= xM

M∑

j=1

rjxj = xMr · x, (16)

where Eqs. (14) and (15) are used for the third equal-
ity, the dynamics of the environmental species M is de-
scribed by

dxM

dt
= −f̄xM = −x2

M r · x, (17)

since fM = 0. The vectors x ≡ (x1, x2, . . . , xM ) and
r ≡ (r1, r2, . . . , rN , rM ) denote the sets of the popula-
tion density and the intrinsic growth rate, respectively. In
general, for persistent species of the RE, at the saturated
fixed point p, the condition

α̃i(p) ≡ fi(p) − f̄(p)

{
= 0 for pi > 0,

< 0 for pi = 0.
(18)

is satisfied in the same way as in (3). Then, if the envi-
ronmental species is a persistent species (pM > 0) at the
saturated fixed point p, α̃M (p) and f̄(p) are both zero,
and thus, using (16), p fulfills the condition

r · p = 0. (19)

This means that at least the system of the persistent
species of (1), (5) and (6) (or, (8), (14) and (15)) is not
permanent because it is proved that f̄(p) is positive if the
RE with aii = 0 is permanent [12, 15].

If we define a function Lp(x) ≡
∑M

i=1 pi log xi which
is actually the Lyapunov function for the RE with anti-
symmetric interactions [7], the derivative of this with re-
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spect to time satisfies the inequality:

dLp(x)
dt

=
M∑

i=1

pi
ẋi

xi

=
M∑

i=1

pi(
M∑

j=1

aijxj − xMr · x)

=
N∑

j=1

xj

N∑

i=1

aijpi + xM

N∑

i=1

aiMpi

+pM

N∑

j=1

aNjxj + aMMxMpM

−xMr · x

= −
N∑

j=1

xj

N∑

i=1

ajipi − xMr · x

= −
M∑

i=1

α̃i(p)xi − ξM r · x

≥ −ξM r · x, (20)

where (8), (9) and (16) are used for the second equality,
(14), (15), (18) and (19) are used for the fourth equality,
(18) is used for the inequality, and ξM ≡ xM − pM . The
equality in the last line holds when the system converges
to the persistent set (xi → pi > 0 for i ∈ P ) and other
non-persistent species become extinct (xi → pi = 0 for
i /∈ P ). By rewriting (17) as

r · x = − 1
x2

M

dxM

dt
=

d
dt

(
1

xM

)
(21)

and inserting this into (20), we obtain

dLp(x)
dt

≥ −ξM
d
dt

(
1

xM

)
. (22)

Using this inequality, we demonstrate
〈

dLp(x)
dt

〉

T

≡ 1
T

∫ T

0

dLp(x)
dt

dt

≥ − 1
T

∫ T

0
ξM

d
dt

(
1

xM

)
dt

= − 1
T

[
ξM

xM
− log xM

]T

0

→ 0 (T → ∞), (23)

which means that Lp(x) is an average Lyapunov function
[12]. Using the trivial inequality

Lp(x) =
M∑

i=1

pi log xi ≤ pi log xi (24)

for the persistent species 0 ≤ xi, pi ≤ 1 and (23), the
population density xi of the persistent species (i ∈ P )
satisfies

−∞ <
Lp(x(0))

pi
≤ lim

t→∞

Lp(x(t))
pi

≤ lim
t→∞

log xi(t), (25)
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Fig. 1 (Color online only) The population density of the
”environmental” species xN+1(t) (red), and the top
predator xN (t) (green) and the basal producer x1(t)
(black) vs. time t of the RE corresponding to the hi-
erarchically ordered random LVE with N = 63. The
number of persistent species is S = 28 for this sample
of the random matrix B and random (ri).

which means the system of the persistent species is
strongly persistent. !

Since α̃i(p) is the transversal eigenvalue [12],
α̃i(p) = 0 for the persistent species i ∈ P denotes that
the saturated fixed point p is linearly neutrally stable in
terms of the flow on the boundary xi = 0 for ∀i /∈ P in
the same way as int the RE with antisymmetric interac-
tions [7]. The hyperplane of that boundary is filled with
neutrally stable orbits around p, and the hyperplane as
a whole constitutes a (non- transitive) attracting set for
almost all the initial conditions.

Note that Theorem 1 holds without the condition of the
hierarchical order (7), and the theorem itself does not give
any information on S , the number of persistent species,
which actually depends on the value of ri and bij . If ri

and bij of the LVE (1) and (5)-(7) takes a random value
chosen from a Gaussian ensemble (with zero mean and
a finite variance) independently, mass extinction occurs
and only S ∼ O(1) species can coexist even if N is large.
However, even if ri and bij are random, S ∼ O(N/2)
species can coexist for N → ∞ if lower-ranking species
are more productive (ri > rj for i < j), which is ver-
ified by numerical simulations (Fig.1). The dependence
of S on the parameters of random ri and bij is now in
progress and will be reported elsewhere. Note that this is
the first example of the chaotic coexistence of an arbitrary
number of species in the food web model in the ”unstable
triangle region” (∀i aii = 0 and the interaction matrix A
has symmetric elements) of the phase diagram presented
in [8].
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5. DISCUSSION
The RE appears in a variety of models of biological

and social dynamics. For example, it was originally pro-
posed as a game dynamical equation [16]. In the context
of game theory, the present model can be termed a ”zero-
sum” game with an environmental strategy M . It also
describes autocatalytic reaction networks such as hyper-
cycles [17, 18], in which xi denotes concentration of a
polynucleotide. In population genetics it is, moreover, a
continuous counterpart of the discrete selection equation
where xi denotes the frequency of allele i in a gene pool.
In particular, gene conversion has been modeled by the
antisymmetric RE [13, 19]. The present study can con-
tribute some information for those systems.

Concerning the antisymmetric interactions of the
LVE, Kerner formulated statistical mechanics and de-
rived some thermodynamic functions[20-22]. Combin-
ing his theory and the statistical mechanics of the species
abundance distribution (SAD) of the random community
model [8, 23-25], a SAD of the average population den-
sity pi of the hierarchically ordered random LVE can be
obtained, which will be reported elsewhere.
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