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Today I talk about “Extra Terms”.

お
ま
け

OMAKE = additional something 3



My results have already appeared 
in Prof. Kori’s talk.

残
念

ZAN-NEN = regrettable 4



Introduction of myself

• My name is Shogo Tanimura.
• In past, I was an assistant (1995-1999) and an 

associate professor (2006-2011) working as a 
member of the group conducted by Iwai sensei 
at Kyoto University.

• My main concerns are foundation of quantum 
theory, dynamical system theory, and application 
of differential geometry to physics.

5



Plan of this talk

1. Raise and formulation of the problem
2. Answer in terms of Lagrangian formalism
3. Answer in terms of Hamiltonian formalism
4. Remaining problems
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Raise of a problem 1/2
Magnetic field 2-form 

𝐵𝐵 = 𝐵𝐵𝑥𝑥𝑑𝑑𝑑𝑑 ∧ 𝑑𝑑𝑑𝑑 + 𝐵𝐵𝑦𝑦𝑑𝑑𝑑𝑑 ∧ 𝑑𝑑𝑑𝑑 + 𝐵𝐵𝑧𝑧𝑑𝑑𝑑𝑑 ∧ 𝑑𝑑𝑑𝑑, 𝑑𝑑𝐵𝐵 = 0
Vector potential 1-form

𝐴𝐴 = 𝐴𝐴𝑥𝑥𝑑𝑑𝑑𝑑 + 𝐴𝐴𝑦𝑦𝑑𝑑𝑑𝑑 + 𝐴𝐴𝑧𝑧𝑑𝑑𝑑𝑑, 𝐵𝐵 = 𝑑𝑑𝐴𝐴
Lagrangian and Hamiltonian involve the vector potential

𝐿𝐿 =
1
2𝑚𝑚

𝑣𝑣𝑥𝑥2 + 𝑣𝑣𝑦𝑦2 + 𝑣𝑣𝑧𝑧2 + 𝑈𝑈 𝑑𝑑,𝑑𝑑, 𝑑𝑑

+𝑒𝑒 𝐴𝐴𝑥𝑥𝑣𝑣𝑥𝑥 + 𝐴𝐴𝑦𝑦𝑣𝑣𝑦𝑦 + 𝐴𝐴𝑧𝑧𝑣𝑣𝑧𝑧 ,

𝐻𝐻 =
1
2𝑚𝑚

𝑝𝑝𝑥𝑥 − 𝑒𝑒𝐴𝐴𝑥𝑥 2 + 𝑝𝑝𝑦𝑦 − 𝑒𝑒𝐴𝐴𝑦𝑦
2 + 𝑝𝑝𝑧𝑧 − 𝑒𝑒𝐴𝐴𝑧𝑧 2

+𝑈𝑈(𝑑𝑑,𝑑𝑑, 𝑑𝑑)
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Raise of a problem 2/2
Even if the magnetic field is invariant along a vector field 𝑢𝑢

ℒ𝑢𝑢𝐵𝐵 = 0 (Lie derivative),
the vector potential 1-form itself is not invariant:

ℒ𝑢𝑢𝐵𝐵 = ℒ𝑢𝑢 𝑑𝑑𝐴𝐴 = 0, but ℒ𝑢𝑢𝐴𝐴 ≠ 0.
Lagrangian and Hamiltonian are not invariant under the 
action of 𝑢𝑢, either.

Can we find a conserved quantity associated to the vector 
field 𝑢𝑢 ?
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Free particle
Hamiltonian:

𝐻𝐻 =
1
2𝑚𝑚

𝑝𝑝𝑥𝑥2 + 𝑝𝑝𝑦𝑦2

Conserved quantities:
𝑝𝑝𝑥𝑥 , 𝑝𝑝𝑦𝑦 , 𝐽𝐽 ≔ 𝑑𝑑𝑝𝑝𝑦𝑦 − 𝑑𝑑𝑝𝑝𝑥𝑥
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Charged particle
Hamiltonian:

𝐻𝐻 =
1
2𝑚𝑚

𝑝𝑝𝑥𝑥 − 𝑒𝑒𝐴𝐴𝑥𝑥 2 + 𝑝𝑝𝑦𝑦 − 𝑒𝑒𝐴𝐴𝑦𝑦
2

Magnetic field and vector potential:
𝐵𝐵 ≔ 𝜕𝜕𝑥𝑥𝐴𝐴𝑦𝑦 − 𝜕𝜕𝑦𝑦𝐴𝐴𝑥𝑥

Kinetic momenta and their Poisson bracket:
𝜋𝜋𝑥𝑥 ≔ 𝑝𝑝𝑥𝑥 − 𝑒𝑒𝐴𝐴𝑥𝑥, 𝜋𝜋𝑦𝑦 ≔ 𝑝𝑝𝑦𝑦 − 𝑒𝑒𝐴𝐴𝑦𝑦 , 𝜋𝜋𝑥𝑥,𝜋𝜋𝑦𝑦 P

= 𝑒𝑒𝐵𝐵
Equations of motion:

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=
1
𝑚𝑚
𝜋𝜋𝑥𝑥,

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=
1
𝑚𝑚
𝜋𝜋𝑦𝑦

𝑑𝑑𝜋𝜋𝑥𝑥
𝑑𝑑𝑑𝑑

=
𝑒𝑒
𝑚𝑚
𝜋𝜋𝑦𝑦𝐵𝐵 = 𝑒𝑒𝐵𝐵

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

,
𝑑𝑑𝜋𝜋𝑦𝑦
𝑑𝑑𝑑𝑑

= −
𝑒𝑒
𝑚𝑚
𝜋𝜋𝑥𝑥𝐵𝐵 = −𝑒𝑒𝐵𝐵

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
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Charged particle
Equations of motion:

𝑑𝑑𝜋𝜋𝑥𝑥
𝑑𝑑𝑑𝑑

= 𝑒𝑒𝐵𝐵
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

,
𝑑𝑑𝜋𝜋𝑦𝑦
𝑑𝑑𝑑𝑑

= −𝑒𝑒𝐵𝐵
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

𝑑𝑑
𝑑𝑑𝑑𝑑

𝑑𝑑𝜋𝜋𝑦𝑦 − 𝑑𝑑𝜋𝜋𝑥𝑥 = −𝑑𝑑𝑒𝑒𝐵𝐵
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

− 𝑑𝑑𝑒𝑒𝐵𝐵
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −
𝑒𝑒𝐵𝐵
2
𝑑𝑑
𝑑𝑑𝑑𝑑

𝑑𝑑2 + 𝑑𝑑2

Assume homogeneous magnetic field 𝐵𝐵 𝑑𝑑,𝑑𝑑 = constant
Conserved quantities:

�𝜋𝜋𝑥𝑥 ≔ 𝜋𝜋𝑥𝑥 − 𝑒𝑒𝐵𝐵𝑑𝑑,

�𝜋𝜋𝑦𝑦 ≔ 𝜋𝜋𝑦𝑦 + 𝑒𝑒𝐵𝐵𝑑𝑑,

𝐽𝐽 ≔ 𝑑𝑑𝜋𝜋𝑦𝑦 − 𝑑𝑑𝜋𝜋𝑥𝑥 +
𝑒𝑒𝐵𝐵
2

𝑑𝑑2 + 𝑑𝑑2
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Magnetic perturbation
Minimal gauge coupling:

𝑝𝑝𝑥𝑥 ⟶ 𝜋𝜋𝑥𝑥 ≔ 𝑝𝑝𝑥𝑥 − 𝑒𝑒𝐴𝐴𝑥𝑥
𝑝𝑝𝑦𝑦 ⟶ 𝜋𝜋𝑦𝑦 ≔ 𝑝𝑝𝑦𝑦 − 𝑒𝑒𝐴𝐴𝑦𝑦

𝐻𝐻 =
1
2𝑚𝑚

𝑝𝑝𝑥𝑥2 + 𝑝𝑝𝑦𝑦2 ⟶ 𝐻𝐻 =
1
2𝑚𝑚

𝑝𝑝𝑥𝑥 − 𝑒𝑒𝐴𝐴𝑥𝑥 2 + 𝑝𝑝𝑦𝑦 − 𝑒𝑒𝐴𝐴𝑦𝑦
2

But conserved quantities do not obey the naive minimal 
replacement rule:

𝐹𝐹(𝒓𝒓,𝒑𝒑) ⟶ 𝐹𝐹(𝒓𝒓,𝒑𝒑 − 𝑒𝑒𝑨𝑨)
𝜋𝜋𝑥𝑥 is not conserved. Instead, �𝜋𝜋𝑥𝑥 ≔ 𝜋𝜋𝑥𝑥 − 𝑒𝑒𝐵𝐵𝑑𝑑 is conserved.
𝐽𝐽 = 𝑑𝑑𝜋𝜋𝑦𝑦 − 𝑑𝑑𝜋𝜋𝑥𝑥 is not conserved. Instead,

𝐽𝐽 = 𝑑𝑑𝜋𝜋𝑦𝑦 − 𝑑𝑑𝜋𝜋𝑥𝑥 +
𝑒𝑒𝐵𝐵
2

𝑑𝑑2 + 𝑑𝑑2

is conserved.

Extra terms
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Statement of the problem
Minimal gauge coupling:

𝑝𝑝𝑥𝑥 ⟶ 𝜋𝜋𝑥𝑥 ≔ 𝑝𝑝𝑥𝑥 − 𝑒𝑒𝐴𝐴𝑥𝑥
𝑝𝑝𝑦𝑦 ⟶ 𝜋𝜋𝑦𝑦 ≔ 𝑝𝑝𝑦𝑦 − 𝑒𝑒𝐴𝐴𝑦𝑦

𝐻𝐻 =
1
2𝑚𝑚

𝑝𝑝𝑥𝑥2 + 𝑝𝑝𝑦𝑦2 ⟶ 𝐻𝐻 =
1
2𝑚𝑚

𝑝𝑝𝑥𝑥 − 𝑒𝑒𝐴𝐴𝑥𝑥 2 + 𝑝𝑝𝑦𝑦 − 𝑒𝑒𝐴𝐴𝑦𝑦
2

When a chargelss particle has a conserved quantity
𝐹𝐹 𝒓𝒓,𝒑𝒑 ,

does a corresponding charged particle has a conserved 
quantity in the form

�𝐹𝐹 = 𝐹𝐹 𝒓𝒓,𝒑𝒑 − 𝑒𝑒𝑨𝑨 + 𝑊𝑊(𝒓𝒓,𝒑𝒑) ?
Do we have a general rule for finding the extra term 𝑊𝑊 ?
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Monopole magnetic field
Spherically symmetric potential: 𝑈𝑈(𝑟𝑟)
Vector potential: 𝐴𝐴 = 𝐴𝐴𝑥𝑥𝑑𝑑𝑑𝑑 + 𝐴𝐴𝑦𝑦𝑑𝑑𝑑𝑑 + 𝐴𝐴𝑧𝑧𝑑𝑑𝑑𝑑
Magnetic field: 𝐵𝐵 = 𝑑𝑑𝐴𝐴 = 𝑔𝑔 sin𝜃𝜃 𝑑𝑑𝜃𝜃 ∧ 𝑑𝑑𝜙𝜙

𝐻𝐻 =
1
2𝑚𝑚

𝑝𝑝𝑥𝑥 − 𝑒𝑒𝐴𝐴𝑥𝑥 2 + 𝑝𝑝𝑦𝑦 − 𝑒𝑒𝐴𝐴𝑦𝑦
2 + 𝑝𝑝𝑧𝑧 − 𝑒𝑒𝐴𝐴𝑧𝑧 2 + 𝑈𝑈(𝑟𝑟)

Kinetic momenta:  𝝅𝝅 ≔ 𝒑𝒑 − 𝑒𝑒𝑨𝑨
Conserved quantity:

�𝑱𝑱 = 𝒓𝒓 × 𝝅𝝅 − 𝑒𝑒𝑔𝑔
𝒓𝒓
𝑟𝑟

Do we have a general rule for finding the extra term?
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Lagrangian formalism
Noether theorem: 
If under an infinitesimal transformation 𝒒𝒒 ⟼ 𝒒𝒒 + 𝛿𝛿𝒒𝒒, the 
Lagrangian is quasi-invariant

𝛿𝛿𝐿𝐿 = −
𝑑𝑑𝑊𝑊 𝒒𝒒, 𝑑𝑑

𝑑𝑑𝑑𝑑
,

then the system has a conserved quantity

𝐹𝐹 = �
𝑖𝑖

𝜕𝜕𝐿𝐿
𝜕𝜕�̇�𝑞𝑖𝑖

�̇�𝑞𝑖𝑖 + 𝑊𝑊.
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Magnetic field in Lagrangian
Minimal coupling

𝐿𝐿 = 𝐿𝐿0 + 𝑒𝑒𝐴𝐴𝑗𝑗�̇�𝑟𝑗𝑗
Assume that 𝐿𝐿0 is invariant under an infinitesimal 
transformation 𝑟𝑟𝑗𝑗 ⟼ 𝑟𝑟𝑗𝑗 + 𝜀𝜀𝑢𝑢𝑗𝑗 𝒓𝒓 . Then

𝛿𝛿 𝐴𝐴𝑗𝑗�̇�𝑟𝑗𝑗 = 𝜀𝜀
𝜕𝜕𝐴𝐴𝑗𝑗
𝜕𝜕𝑟𝑟𝑘𝑘

𝑢𝑢𝑘𝑘�̇�𝑟𝑗𝑗 + 𝐴𝐴𝑗𝑗�̇�𝑢𝑗𝑗

= 𝜀𝜀
𝜕𝜕𝐴𝐴𝑗𝑗
𝜕𝜕𝑟𝑟𝑘𝑘

−
𝜕𝜕𝐴𝐴𝑘𝑘
𝜕𝜕𝑟𝑟𝑗𝑗

𝑢𝑢𝑘𝑘�̇�𝑟𝑗𝑗 +
𝜕𝜕𝐴𝐴𝑘𝑘
𝜕𝜕𝑟𝑟𝑗𝑗

𝑢𝑢𝑘𝑘�̇�𝑟𝑗𝑗 + 𝐴𝐴𝑘𝑘�̇�𝑢𝑘𝑘

= 𝜀𝜀 𝐵𝐵𝑘𝑘𝑗𝑗𝑢𝑢𝑘𝑘�̇�𝑟𝑗𝑗 +
𝑑𝑑
𝑑𝑑𝑑𝑑

𝐴𝐴𝑘𝑘𝑢𝑢𝑘𝑘

On the other hand, 𝛿𝛿𝐿𝐿 = 𝜀𝜀 𝜕𝜕𝐿𝐿
𝜕𝜕𝑟𝑟𝑗𝑗

𝑢𝑢𝑗𝑗 + 𝜕𝜕𝐿𝐿
𝜕𝜕�̇�𝑟𝑗𝑗

�̇�𝑢𝑗𝑗 = 𝜀𝜀 𝑑𝑑
𝑑𝑑𝑑𝑑

𝜕𝜕𝐿𝐿
𝜕𝜕�̇�𝑟𝑗𝑗

𝑢𝑢𝑗𝑗 16



Geometric consideration
Let us to rewrite this term 𝐵𝐵𝑘𝑘𝑗𝑗𝑢𝑢𝑘𝑘�̇�𝑟𝑗𝑗
2-form 𝐵𝐵 = 𝐵𝐵𝑘𝑘𝑗𝑗𝑑𝑑𝑟𝑟𝑘𝑘⨂𝑑𝑑𝑟𝑟𝑗𝑗

interior product  𝑖𝑖𝑢𝑢𝐵𝐵 = 𝐵𝐵𝑘𝑘𝑗𝑗𝑢𝑢𝑘𝑘 𝑑𝑑𝑟𝑟𝑗𝑗 with 𝑢𝑢 = 𝑢𝑢𝑘𝑘
𝜕𝜕
𝜕𝜕𝑟𝑟𝑘𝑘

homotopy formula: 𝑑𝑑𝑖𝑖𝑢𝑢 + 𝑖𝑖𝑢𝑢𝑑𝑑 𝐵𝐵 = ℒ𝑢𝑢𝐵𝐵 : Lie derivative
Gauss’ law for magnetic field: 𝑑𝑑𝐵𝐵 = 0
Assumption of symmetry: ℒ𝑢𝑢𝐵𝐵 = 0
Therefore, 𝑑𝑑𝑖𝑖𝑢𝑢𝐵𝐵 = 0.
Poincare’s lemma tells ∃𝑊𝑊𝑢𝑢 0-form satisfying 𝑖𝑖𝑢𝑢𝐵𝐵 = −𝑑𝑑𝑊𝑊𝑢𝑢

Namely, we can write

𝐵𝐵𝑘𝑘𝑗𝑗𝑢𝑢𝑘𝑘�̇�𝑟𝑗𝑗 = −
𝑑𝑑𝑊𝑊𝑢𝑢

𝑑𝑑𝑑𝑑
17



Geometric consideration
𝐿𝐿 = 𝐿𝐿0 + 𝑒𝑒𝐴𝐴𝑗𝑗�̇�𝑟𝑗𝑗
𝛿𝛿𝑟𝑟𝑗𝑗 = 𝜀𝜀𝑢𝑢𝑗𝑗
𝛿𝛿𝐿𝐿0 = 0

𝛿𝛿𝐿𝐿 = 𝜀𝜀
𝑑𝑑
𝑑𝑑𝑑𝑑

𝜕𝜕𝐿𝐿
𝜕𝜕�̇�𝑟𝑗𝑗

𝑢𝑢𝑗𝑗 = 𝜀𝜀
𝑑𝑑
𝑑𝑑𝑑𝑑

𝑝𝑝𝑗𝑗𝑢𝑢𝑗𝑗

𝛿𝛿 𝑒𝑒𝐴𝐴𝑗𝑗�̇�𝑟𝑗𝑗 = 𝑒𝑒𝜀𝜀 𝐵𝐵𝑘𝑘𝑗𝑗𝑢𝑢𝑘𝑘�̇�𝑟𝑗𝑗 +
𝑑𝑑
𝑑𝑑𝑑𝑑

𝐴𝐴𝑗𝑗𝑢𝑢𝑗𝑗 = 𝑒𝑒𝜀𝜀
𝑑𝑑
𝑑𝑑𝑑𝑑

−𝑊𝑊𝑢𝑢 + 𝐴𝐴𝑗𝑗𝑢𝑢𝑗𝑗

By putting them together, we reach 
𝑑𝑑
𝑑𝑑𝑑𝑑

𝑝𝑝𝑗𝑗𝑢𝑢𝑗𝑗 + 𝑒𝑒𝑊𝑊𝑢𝑢 − 𝑒𝑒𝐴𝐴𝑗𝑗𝑢𝑢𝑗𝑗 =
𝑑𝑑
𝑑𝑑𝑑𝑑

𝑝𝑝𝑗𝑗 − 𝑒𝑒𝐴𝐴𝑗𝑗 𝑢𝑢𝑗𝑗 + 𝑒𝑒𝑊𝑊𝑢𝑢 = 0
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Theorem (Main Result)

When a dynamical system 𝐿𝐿0 is invariant under an action of 
vector field 𝑢𝑢, it has a Noether conservation quantity

𝐹𝐹𝑢𝑢 =
𝜕𝜕𝐿𝐿0
𝜕𝜕�̇�𝑟𝑗𝑗

𝑢𝑢𝑗𝑗 = 𝑝𝑝𝑗𝑗𝑢𝑢𝑗𝑗 .

If an applied magnetic field 𝐵𝐵 = 𝑑𝑑𝐴𝐴 is invariant, ℒ𝑢𝑢𝐵𝐵 = 0,
there exists a function 𝑊𝑊𝑢𝑢 such that 𝒊𝒊𝒖𝒖𝑩𝑩 = −𝒅𝒅𝑾𝑾𝒖𝒖. Then the 
corresponding system in the magnetic field admits a 
conserved quantity 

�𝐹𝐹𝑢𝑢 = 𝑝𝑝𝑗𝑗 − 𝑒𝑒𝐴𝐴𝑗𝑗 𝑢𝑢𝑗𝑗 + 𝑒𝑒𝑊𝑊𝑢𝑢.

This gives an answer to the problem proposed first.

minimal coupling + extra term
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Example: homogenous magnetic field
In ℝ2, assume 𝐵𝐵 = 𝐵𝐵𝑑𝑑𝑑𝑑 ∧ 𝑑𝑑𝑑𝑑 with a constant 𝐵𝐵. 

1) It is invariant under 𝑢𝑢 = 𝜕𝜕
𝜕𝜕𝑥𝑥

. 
The equation 𝑖𝑖𝑢𝑢𝐵𝐵 = 𝐵𝐵𝑑𝑑𝑑𝑑 = −𝑑𝑑𝑊𝑊𝑢𝑢 has a solution 𝑊𝑊𝑢𝑢 = −𝐵𝐵𝑑𝑑.
The corresponding conserved quantity is

�𝐹𝐹𝑢𝑢 = 𝑝𝑝𝑗𝑗 − 𝑒𝑒𝐴𝐴𝑗𝑗 𝑢𝑢𝑗𝑗 + 𝑒𝑒𝑊𝑊𝑢𝑢 = 𝜋𝜋𝑥𝑥 − 𝑒𝑒𝐵𝐵𝑑𝑑.

2) The magnetic field is invariant under 𝑢𝑢 = 𝑑𝑑 𝜕𝜕
𝜕𝜕𝑦𝑦
− 𝑑𝑑 𝜕𝜕

𝜕𝜕𝑥𝑥
. 

The equation 𝑖𝑖𝑢𝑢𝐵𝐵 = −𝐵𝐵𝑑𝑑𝑑𝑑𝑑𝑑 − 𝐵𝐵𝑑𝑑𝑑𝑑𝑑𝑑 = −𝑑𝑑𝑊𝑊𝑢𝑢 has a solution 

𝑊𝑊𝑢𝑢 = 1
2
𝐵𝐵 𝑑𝑑2 + 𝑑𝑑2 .

The corresponding conserved quantity is

�𝐹𝐹𝑢𝑢 = 𝑝𝑝𝑗𝑗 − 𝑒𝑒𝐴𝐴𝑗𝑗 𝑢𝑢𝑗𝑗 + 𝑒𝑒𝑊𝑊𝑢𝑢 = 𝑑𝑑𝜋𝜋𝑦𝑦 − 𝑑𝑑𝜋𝜋𝑥𝑥 +
1
2
𝑒𝑒𝐵𝐵 𝑑𝑑2 + 𝑑𝑑2 .
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Hamiltonian formalism (general)
Manifold 𝑀𝑀
Symplectic form 𝜔𝜔 (2-form, nondegenerated, 𝑑𝑑𝜔𝜔 = 0)
Hamiltonian 𝐻𝐻 ∈ 𝐶𝐶∞(𝑀𝑀)
Hamilton vector field 𝑋𝑋𝑓𝑓 𝑖𝑖𝑋𝑋𝑓𝑓𝜔𝜔 = −𝑑𝑑𝑑𝑑 for 𝑑𝑑 ∈ 𝐶𝐶∞(𝑀𝑀)
Poisson bracket 𝑑𝑑,𝑔𝑔 = 𝑋𝑋𝑔𝑔𝑑𝑑 = −𝑋𝑋𝑓𝑓𝑔𝑔 for 𝑑𝑑,𝑔𝑔 ∈ 𝐶𝐶∞(𝑀𝑀)

Symmetry: vector field 𝑋𝑋
ℒ𝑋𝑋𝜔𝜔 = 0, ℒ𝑋𝑋𝐻𝐻 = 0

Then, 0 = ℒ𝑋𝑋𝜔𝜔 = 𝑑𝑑𝑖𝑖𝑋𝑋𝜔𝜔 + 𝑖𝑖𝑋𝑋𝑑𝑑𝜔𝜔 = 𝑑𝑑(𝑖𝑖𝑋𝑋𝜔𝜔), therefore locally 
exists 𝑑𝑑 such that 𝑖𝑖𝑋𝑋𝜔𝜔 = −𝑑𝑑𝑑𝑑, namely 𝑋𝑋 = 𝑋𝑋𝑓𝑓. Then

𝑑𝑑,𝐻𝐻 = 𝑋𝑋𝐻𝐻𝑑𝑑 = −𝑋𝑋𝑓𝑓𝐻𝐻 = −ℒ𝑋𝑋𝑓𝑓𝐻𝐻 = 0,
hence, 𝑑𝑑 is a conserved quantity. 21



Magnetic field perturbation
Manifold 𝑀𝑀 = 𝑇𝑇∗ℝ3

Minimal coupling in the symplectic form 
𝜔𝜔0 = 𝑑𝑑𝑝𝑝𝑥𝑥 ∧ 𝑑𝑑𝑑𝑑 + 𝑑𝑑𝑝𝑝𝑦𝑦 ∧ 𝑑𝑑𝑑𝑑 + 𝑑𝑑𝑝𝑝𝑧𝑧 ∧ 𝑑𝑑𝑑𝑑

𝜔𝜔 = 𝑑𝑑𝑝𝑝𝑥𝑥 ∧ 𝑑𝑑𝑑𝑑 + 𝑑𝑑𝑝𝑝𝑦𝑦 ∧ 𝑑𝑑𝑑𝑑 + 𝑑𝑑𝑝𝑝𝑧𝑧 ∧ 𝑑𝑑𝑑𝑑 + 𝑒𝑒𝐵𝐵
Symmetry: vector field 𝑋𝑋

ℒ𝑋𝑋𝜔𝜔0 = 0, ℒ𝑋𝑋𝐵𝐵 = 0, ℒ𝑋𝑋𝐻𝐻 = 0
Then, locally exists 𝐹𝐹,𝑊𝑊 such that 𝑖𝑖𝑋𝑋𝜔𝜔0 = −𝑑𝑑𝐹𝐹 and  
𝑖𝑖𝑋𝑋𝐵𝐵 = −𝑑𝑑𝑊𝑊. Then by putting �𝐹𝐹 = 𝐹𝐹 + 𝑒𝑒𝑊𝑊, we have 
𝑖𝑖𝑋𝑋𝜔𝜔 = 𝑖𝑖𝑋𝑋 𝜔𝜔0 + 𝑒𝑒𝐵𝐵 = −𝑑𝑑 𝐹𝐹 + 𝑒𝑒𝑊𝑊 = −𝑑𝑑 �𝐹𝐹, and hence 

�𝐹𝐹,𝐻𝐻 𝜔𝜔 = −𝑋𝑋 �𝐹𝐹𝐻𝐻 = −ℒ𝑋𝑋𝐻𝐻 = 0.
hence, 𝑑𝑑 is a conserved quantity.
This equation reproduces the extra term for the Noether charge.  
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Remaining problem
Defining equations

𝑖𝑖𝑋𝑋𝜔𝜔 = −𝑑𝑑𝑑𝑑, 𝑑𝑑,𝑔𝑔 = 𝑋𝑋𝑔𝑔𝑑𝑑

scalar function ⟶ vector field

𝑑𝑑 ⟼ 𝑋𝑋𝑓𝑓
𝑋𝑋𝑓𝑓 ,𝑋𝑋𝑔𝑔 = −𝑋𝑋 𝑓𝑓,𝑔𝑔

vector field ⟶ scalar function

𝑋𝑋 ⟼ 𝑑𝑑𝑋𝑋 modulo additional constant

𝑑𝑑𝑋𝑋 ,𝑑𝑑𝑌𝑌 = −𝑑𝑑𝑋𝑋,𝑌𝑌 + 𝑐𝑐(𝑋𝑋,𝑌𝑌)
Cohomology of the Lie algebra.
If it is trivial, the set of functions 𝑑𝑑𝑋𝑋 are 
called momentum maps.

𝑖𝑖𝑢𝑢𝐵𝐵 = −𝑑𝑑𝑊𝑊𝑢𝑢, �𝐹𝐹𝑢𝑢 = 𝑝𝑝 − 𝑒𝑒𝐴𝐴,𝑢𝑢 + 𝑒𝑒𝑊𝑊𝑢𝑢. Is the cohomology of 
the Noether charges associated to a magnetic field trivial?

�𝐹𝐹𝑢𝑢, �𝐹𝐹𝑣𝑣 = − �𝐹𝐹 𝑢𝑢,𝑣𝑣 + 𝑒𝑒𝑊𝑊𝑢𝑢,𝑣𝑣 + 𝑒𝑒𝑖𝑖𝑢𝑢𝑖𝑖𝑣𝑣𝐵𝐵
23



Summary and future work
• We found a scheme for transforming a conserved 

quantity of a chargeless particle to a conserved quantity 
of a charged particle in a magnetic field that admits the 
same symmetry.

• Cohomological structure
• Relation with Marsden-Weinstein reduction
• Laplace-Runge-Lenz vector
• Quantization

𝐹𝐹𝑢𝑢 =
𝜕𝜕𝐿𝐿0
𝜕𝜕�̇�𝑟𝑗𝑗

𝑢𝑢𝑗𝑗 = 𝑝𝑝𝑗𝑗𝑢𝑢𝑗𝑗 → �𝐹𝐹𝑢𝑢 = 𝑝𝑝𝑗𝑗 − 𝑒𝑒𝐴𝐴𝑗𝑗 𝑢𝑢𝑗𝑗 + 𝑒𝑒𝑊𝑊𝑢𝑢

𝑖𝑖𝑢𝑢𝐵𝐵 = −𝑑𝑑𝑊𝑊𝑢𝑢

minimal coupling + extra term

defining equation for the extra term
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Thank you for your attention
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