講演番号:16aB204-8

電東と磁東のホモロジー的交換関係と LC回路の量子化

Homological Commutation Relation of Electric and Magnetic Fluxes,

Quantization of LC circuit

谷村 省吾

名古屋大学 情報学研究科

Shogo Tanimura

Nagoya University, Japan

Motivation: quantization of LC circuit

- L=inductance, C=capacitance
- Inductance has a magnetic flux $\Phi_{\rm m}$ associated with electric current I.

Capacitance has an electric flux associated with electric

charge Q.

Classical LC circuit

Constituent equations:

$$\Phi_{\rm e} = Q = CV, \qquad \Phi_{\rm m} = LI$$

Equations of motion:

$$\frac{dQ}{dt} = I, \qquad \frac{d\Phi_{\rm m}}{dt} = -V$$

Oscillation:

$$L\frac{d^2Q}{dt^2} = L\frac{dI}{dt} = \frac{d\Phi_{\rm m}}{dt} = -V = -\frac{1}{C}Q$$

$$\frac{d^2Q}{dt^2} = -\frac{1}{LC}Q = -\omega^2Q \qquad \omega = \frac{1}{\sqrt{LC}}$$

Phaser representation of (V, I)

$$Q = CV,$$
 $\Phi_{\rm m} = LI$ $\frac{dQ}{dt} = C\frac{dV}{dt} = I,$ $\frac{d\Phi_{m}}{dt} = L\frac{dI}{dt} = -V$

frequency impedance
$$\omega \coloneqq \frac{1}{\sqrt{LC}}$$
, $Z \coloneqq \sqrt{\frac{L}{C}}$, $\omega Z = \frac{1}{C}$, $\omega Z = \frac{1}{L}$

$$\frac{dV}{dt} = \omega ZI, \qquad Z\frac{dI}{dt} = -\omega V$$

$$\frac{d}{dt}(V + iZI) = -i\omega(V + iZI)$$

Quantized LC circuit

- Hamiltonian: $\widehat{H} = \frac{1}{2L}\widehat{\Phi}_{\mathrm{m}}^2 + \frac{1}{2C}\widehat{Q}^2$
- A product of electric charge Q and magnetic flux Φ_m has a dimension of action integral $S=\int eA\cdot v\,dt=e\int A\cdot dr=e\int B\cdot n\,d\sigma$
- Assume the commutation relation $[\widehat{Q}, \widehat{\Phi}_{m}] = i\hbar \widehat{1}$.
- The Heisenberg equation reproduces the LC equation:

$$rac{d\widehat{Q}}{dt} = rac{1}{i\hbar}igl[\widehat{Q},\widehat{H}igr] = rac{1}{L}\widehat{\Phi}_m, \qquad rac{d\widehat{\Phi}_m}{dt} = rac{1}{i\hbar}igl[\widehat{\Phi}_m,\widehat{H}igr] = -rac{1}{C}\widehat{Q}$$

• Quantization of energy: $\widehat{H}=\hbar\omega\left(\widehat{a}^{\dagger}\widehat{a}+\frac{1}{2}\right)$, $\widehat{a}=\frac{1}{\sqrt{2\hbar\omega C}}\left(\widehat{Q}+i\sqrt{\frac{C}{L}}\widehat{\Phi}_{m}\right)$

Question

- Coulomb law implies $\widehat{Q} = \widehat{\Phi}_{\mathbf{e}}$ (electric charge on capacitor)
- Commutation relation: $[\widehat{Q},\widehat{\Phi}_m] = [\widehat{\Phi}_e,\widehat{\Phi}_m] = i\hbar \widehat{1}$.
- Why can electric flux and magnetic flux be canonical conjugate non-commutative variables?
- In quantum field theory, space-likely separated two observables must be commutative, $[\widehat{\Phi}_e, \widehat{\Phi}_m] = 0$

"Derivation" of $[\widehat{Q},\widehat{\Phi}_{\rm m}]=i\hbar\widehat{1}$ a semiclassical argument (1/2)

- A particle with charge e move in the space of the capacitor.
- Displacement Δx of the electric particle induces charge of the capacitor $\Delta Q = e^{\frac{1}{D}} \Delta x$. Hence,

$$Q = \frac{e}{D}x + \text{const}$$

 The momentum change of the particle is forced by the electric field that is induced by Faraday law:

$$\frac{dp}{dt} = eE = -e\frac{V}{D} = \frac{e}{D}\frac{d\Phi_{\rm m}}{dt},$$

$$p = \frac{e}{D}\Phi_{m} + \text{const}$$

$$V = ED$$

"Derivation" of $[\widehat{Q},\widehat{\Phi}_{\rm m}]=i\hbar\widehat{1}$ a semiclassical argument (2/2)

Quantize them:

$$\widehat{Q} = \frac{e}{D}\widehat{x} + \text{const}, \qquad \widehat{p} = \frac{e}{D}\widehat{\Phi}_{\text{m}} + \text{const}$$

We get

$$\left[\widehat{Q},\widehat{\Phi}_{\mathrm{m}}\right] = \left[\frac{e}{D}\widehat{x},\frac{D}{e}\widehat{p}\right] = \left[\widehat{x},\widehat{p}\right] = i\hbar\widehat{1}$$

 Superficially, the canonical commutation relation (CCR) of the position and momentum of the particle leads to the CCR of the capacitance charge and the inductance magnetic flux.

Main issue

Can we derive the CCR $\left[\widehat{\Phi}_{e},\widehat{\Phi}_{m}\right]=i\hbar\widehat{1}$ of electric flux and magnetic flux by a genuine quantum-field-theoretical argument?

Quantum ElectroDynamics

- Decomposition of the electric field into transversal and longitudinal components: $E=E_{\perp}+E_{\parallel}$, div $E_{\perp}=0$, rot $E_{\parallel}=0$
- Coulomb gauge: div A = 0, $\varphi_e = -\Delta^{-1}\rho$
- Lagrangian: $\mathcal{L} = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu}$, $F_{\mu\nu} = \partial_{\mu}A_{\nu} \partial_{\nu}A_{\mu}$ (metric=(+, -, -, -))
- Canonical variable:

$$\Pi_x \coloneqq \frac{\partial \mathcal{L}}{\partial (\partial_0 A^x)} = F^{01} = -E_\perp^x$$

CCR (quantization):

$$\left[\widehat{A}^{j}(x,t),\widehat{\Pi}_{k}(y,t)\right]=i\hbar\left(\delta_{jk}-\frac{\partial_{j}\partial_{k}}{\Delta}\right)\delta^{3}(x-y)$$

Derivation of $[\widehat{\Phi}_e, \widehat{\Phi}_m] = i\hbar \widehat{1} \cdot N$

• CCR

$$-\left[\widehat{A}_{\perp}^{j}(x,t),\widehat{E}_{\perp}^{k}(y,t)\right]=i\hbar\left(\delta_{jk}-\frac{\partial_{j}\partial_{k}}{\Delta}\right)\delta^{3}(x-y)$$

Integrations:

$$\widehat{\Phi}_{\mathrm{m}} = \int_{C_{\mathrm{m}}} \widehat{A}_{\perp} \cdot dr = \int_{S_{\mathrm{m}}} \widehat{B} \cdot n \, d\sigma, \qquad \widehat{\Phi}_{\mathrm{e}} = \int_{S_{\mathrm{e}}} \widehat{E}_{\perp} \cdot n \, d\sigma$$

• CCR yields the linking number:

$$-[\widehat{\boldsymbol{\Phi}}_{\mathrm{m}},\widehat{\boldsymbol{\Phi}}_{\mathrm{e}}] = [\widehat{\boldsymbol{\Phi}}_{\mathrm{e}},\widehat{\boldsymbol{\Phi}}_{\mathrm{m}}] = i\hbar\widehat{\mathbf{1}}\cdot N(S_{\mathrm{e}},S_{\mathrm{m}})$$

Homological invariance

• Homological deformation of surface does not change the magnetic flux since $\operatorname{div}\widehat{B}=0$:

$$\widehat{\Phi}_m = \int_{S_m} \widehat{B} \cdot n \, d\sigma = \int_{S_m'} \widehat{B} \cdot n \, d\sigma$$

 Inclusion of the longitudinal electric field changes the electric flux but does not change the commutator since

$$\left[\widehat{A}_{\perp}^{j}(x,t),\widehat{E}_{\parallel}^{k}(y,t)\right]=0, \quad \left(E_{\parallel}=-\operatorname{grad}\varphi_{e}=\operatorname{grad}\Delta^{-1}\rho\right)$$
:

$$\widehat{\boldsymbol{\Phi}}_{\mathbf{e}} = \int_{S_{\mathbf{e}}} (\widehat{\boldsymbol{E}}_{\perp} + \widehat{\boldsymbol{E}}_{\parallel}) \cdot \boldsymbol{n} \, d\boldsymbol{\sigma} \neq \int_{S_{\mathbf{e}}} \widehat{\boldsymbol{E}}_{\perp} \cdot \boldsymbol{n} \, d\boldsymbol{\sigma}$$

• Electric-magnetic-flux commutator $[\widehat{\Phi}_e, \widehat{\Phi}_m] = i\hbar \widehat{1} \cdot N(S_e, S_m)$ is topologically invariant as it is to be.

Linking number in LC circuit

- The linking number of S_e and S_m (or C_m) is one in the LC circuit.
- Therefore, $\left[\widehat{\Phi}_{e},\widehat{\Phi}_{m}\right]=\left[\widehat{Q},\widehat{\Phi}_{m}\right]=i\hbar\widehat{1}$. This is the desired result.

Relativistic locality

Spatially-separated flux operators commute:

$$\left[\widehat{oldsymbol{\phi}}_{\mathrm{e}}^{(1)},\widehat{oldsymbol{\phi}}_{\mathrm{m}}^{(1)}
ight]=i\hbar\widehat{\mathbf{1}}$$

$$\left[\widehat{m{\Phi}}_{\mathrm{e}}^{(2)},\widehat{m{\Phi}}_{\mathrm{m}}^{(2)}
ight]=i\hbar\widehat{\mathbf{1}}$$

$$\left[\widehat{oldsymbol{\Phi}}_{\mathrm{e}}^{(1)},\widehat{oldsymbol{\Phi}}_{\mathrm{e}}^{(2)}
ight]=\mathbf{0}$$

$$\left[\widehat{oldsymbol{\phi}}_{\mathrm{e}}^{(1)},\widehat{oldsymbol{\phi}}_{\mathrm{m}}^{(2)}
ight]=\mathbf{0}$$

$$\left[\widehat{m{\Phi}}_{m}^{(1)},\widehat{m{\Phi}}_{e}^{(2)}
ight]=\mathbf{0}$$

$$\left[\widehat{oldsymbol{\phi}}_{\mathrm{m}}^{(1)},\widehat{oldsymbol{\phi}}_{\mathrm{m}}^{(2)}
ight]=\mathbf{0}$$

EPR paradox

• Two particles described by $\widehat{q}^{(1)}$, $\widehat{p}^{(1)}$, $\widehat{q}^{(2)}$, $\widehat{p}^{(2)}$.

$$\left[\widehat{q}^{(j)},\widehat{p}^{(k)}
ight]=i\hbar\delta^{jk}\widehat{\mathbf{1}}, \qquad \left[\widehat{q}^{(j)},\widehat{q}^{(k)}
ight]=\left[\widehat{p}^{(j)},\widehat{p}^{(k)}
ight]=\mathbf{0}$$

• EPR state (entangled state) $|\Psi\rangle$ is defined by

$$(\widehat{q}^{(1)} - \widehat{q}^{(2)})|\Psi\rangle = D|\Psi\rangle, \qquad (\widehat{p}^{(1)} + \widehat{p}^{(2)})|\Psi\rangle = P|\Psi\rangle$$

(*D* and *P* are c-numbers. Actually, $|\Psi\rangle$ is an approximate eigenstate.)

Application: a test of EPR paradox

Coupled LC circuits provides a platform to realize the EPR state.

$$\left(\widehat{\boldsymbol{\Phi}}_{\mathrm{e}}^{(1)} - \widehat{\boldsymbol{\Phi}}_{\mathrm{e}}^{(2)}\right) |\boldsymbol{\Psi}\rangle = \boldsymbol{D}|\boldsymbol{\Psi}\rangle, \qquad \left(\widehat{\boldsymbol{\Phi}}_{\mathrm{m}}^{(1)} + \widehat{\boldsymbol{\Phi}}_{\mathrm{m}}^{(2)}\right) |\boldsymbol{\Psi}\rangle = \boldsymbol{P}|\boldsymbol{\Psi}\rangle$$

 This can provide a model for testing Clauser-Horne-Shimony-Holt inequality for continuous variables.

Summary

- Commutation relation of the electric flux and the magnetic flux $\left[\widehat{\boldsymbol{\varPhi}}_{e},\widehat{\boldsymbol{\varPhi}}_{m}\right]=i\hbar\widehat{\mathbf{1}}\cdot\textit{N}(\textit{S}_{e},\textit{C}_{m})$ is derived from QED.
- The commutator gives the linking number of the surface $S_{\rm e}$ defining the electric flux and the loop $C_{\rm m}$ defining magnetic flux.
- Homological invariance of the commutator is proved.
- It is proved that spatial unlinked flux operators commute.
- LC circuit system can provide a platform for experimental realization of the EPR state.
- Similar result has been discovered by Mikhail A. Savrov, "Commutator of Electric Charge and Magnetic Flux" (arXiv:2003.02225v2), but our result is more detailed.

Thank you for your attention.