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Homological Commutation Relation of Electric and Magnetic Fluxes,
Quantization of LC circuit
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Motivation: quantization of LC circuit

« L=inductance, C=capacitance

* Inductance has a magnetic flux @, associated with electric
current I.

« Capacitance has an electric flux @, associated with electric
charge 0.




Classical LC circuit

« Constituent equations:
®,=Q=CV, &, =LI

« Equations of motion: ;
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Phaser representation of (V,I)

Q=0"CV, D =1LI
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Quantized LC circuit

- Hamiltonian: H _—cpz o 1 = Q?

* A product of electrlc charge Q and magnetic flux @,, has a
dimension of action integral S = [eA-vdt=e[A-dr=e[B-ndo
- Assume the commutation relation [Q, ®,, | = in1.

* The Heisenberg equation reproduces the LC equation:

dQ 1 1. db,, 1 .. _. 1_
dt m[Q ]_Z¢ dt _E[CI""’H]___Q
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Question

« Coulomb law implies Q = &, (electric charge on capacitor)

- Commutation relation: |Q, ®,,| = |®,, D,,,| = ir1.

« Why can electric flux and magnetic flux be canonical conjugate
nhon-commutative variables?

* In quantum field theory,
space-likely separated two observables

must be commutative, (&, ®,,| =0 = :TQq)
\ A2 e




“Derivation” of |Q, @, | = irl
a semiclassical argument (1/2)

A particle with charge e move in the space of the
capacitor.

* Displacement Ax of the electric particle induces charge

of the capacitor AQ = e%Ax. Hence,
€ D

= —Xx + const
¢ D

- The momentum change of the particle is forced by the-

electric field that is induced by Faraday law:

dp V edd,

—=eEk =—-e—-= :

dt o D D dt
p = —-d,, + const
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“Derivation” of |Q, @, | = irl
a semiclassical argument (2/2)
* Quantize them:

Q =%3c\+const, ’ﬁz%fi)m+const +Q

« We get “
00 1=15225] =291 = ini D 31

|0, Py = [Ex»zpl = [x,p| = inl x|

« Superficially, the canonical commutation relation -
(CCR) of the position and momentum of the particle —Q
leads to V=ED

the CCR of the capacitance charge and the
inductance magnetic flux.



Main issue

Can we derive the CCR |®,, @, | = i1 of
electric flux and magnetic flux by a genuine
quantum-field-theoretical argument?



Quantum ElectroDynamics

« Decomposition of the electric field into transversal and
longitudinal components: E=E, + E;, divE, =0, rotE; =0

- Coulomb gauge: divd =0, ¢.=-A"1p

- Lagrangian: £ = _ZF!WFW F,, = 4,4, — d,A, (metric=(+,—,—, —))
« Canonical variable:
0L
I, = = FO' = —F%
¥ 9(04%)

« CCR (quantization):

|4 (x, ), T, (y, t)| = i <6jk — %) 5 (x — y)



Derivation of |®,,®,,| = ih1-N
* CCR

_[A (x, 1), E’j(y t)] in (51k a’f") 5 (x —y)

 Integrations:
= fcmﬁl - dr = fsmﬁ-nda, D, =

« CCR yields the linking number:
_[am; ae] — [ae: am] = ih1- N(Se¢,Sm)




Homological invariance

« Homological deformation of surface does not change the
magnetic flux since divB =0:

fﬁm:j E-ndazf B-ndo
Sm Sh

* Inclusion of the longitudinal electric field changes the electric
flux but does not change the commutator since

[ﬁi (x, t),E'ff(y, t)] =0, (E” = —grad @, = grad A" 1p ) .

B, =f (B, +E)) -nda;tf E, -ndo
Se S,
- Electric-magnetic-flux commutator |®,, ®,,| = i1 - N(S,,S,,) is
topologically invariant as it is to be.



Linking number in LC circuit

» The linking number of S, and §,, (or C,,,) is one in the LC circuit.

- Therefore, (@, ®,,| = |Q, ?,,| = iR1.
This is the desired result.




Relativistic locality

Spatially-separated flux operators commute:

& M| = in1

m

32,62 | = in1

-@gl)’ agz)- — O

3| =0

3D 32 = 0

>, 32| =0



EPR paradox

- Two particles described by gV, p™ §®, p@.
(g0, p®] = ing’*1,  [q¥,q®] = [pD,p®] =0
- EPR state (entangled state) |¥) is defined by
@Y -q®)wy=p1w), (Y +p?)|¥) = P|¥)
(D and P are c-numbers. Actually, |¥) is an approximate
eigenstate.)

particle 1 particle 2



Application: a test of EPR paradox
« Coupled LC circuits provides a platform to realize the EPR state.
(38 -3P) 1wy =Dlw), (33 +32)|¥) = P|¥)

« This can provide a model for testing Clauser-Horne-Shimony-
Holt inequality for continuous variables.

|< .|
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Summary

« Commutation relation of the electric flux and the magnetic flux
[@EJ am] — ihi ) N(SEJ Cm)
Is derived from QED.

« The commutator gives the linking number of the surface S,
defining the electric flux and the loop C,, defining magnetic flux.

« Homological invariance of the commutator is proved.
« It is proved that spatial unlinked flux operators commute.

 LC circuit system can provide a platform for experimental
realization of the EPR state.

« Similar result has been discovered by Mikhail A. Savrov,
“Commutator of Electric Charge and Magnetic Flux”
(arXiv:2003.02225v2), but our result is more detailed.



https://arxiv.org/abs/2003.02225v2

Thank you for your attention.
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