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Introduction of myself
• 1967, born in Nagoya, that is a city located between Tokyo and 

Osaka. Toyota city is in the same prefecture.
• 1990, finish the undergraduate course of Department of Applied 

Physics, Nagoya University (adviser: Haga)
• 1995, got PhD. degree, at E-lab, Department of Physics, Nagoya 

University (adviser: Ohnuki, Kitakado, Sanda, Yamawaki)
• JSPS Posdoc at University of Tokyo (host: Eguchi) 
• Got job at Kyoto University, Osaka City University, again Kyoto 

University
• 2011, came back to Nagoya University
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Visits to Germany
• Fist visit to Max-Planck Institute in Heidelberg
• Second visit to University of Göttingen

to deliver seminars at Dr. Karl-Henning 
Rehren’s and Dr. Ralf Meyer’s groups, in 2012.
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Research interests
• Quantum Foundations
• Quantum Information Theory
• Dynamical Systems
• Statistical Mechanics
• Differential Geometry
• Category Theory
• Artificial Intelligence
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Today’s Topic
• Superselection rule in quantum theory from the viewpoint of 

measurement theory
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Selection rule
• Originally, the selection rule was found in spectrum of atoms.
• Some of photonic transitions do not occur even though they are 

allowed by energy conservation.
• Selection rule: ∆𝐿𝐿 = 𝐿𝐿f − 𝐿𝐿i = ±1
• Some of transitions (for example ∆𝐿𝐿 = ±2) are not allowed by 

angular-momentum conservation.

allowed transition

forbidden transition

𝐿𝐿 = 1
𝐿𝐿 = 0

𝐿𝐿 = 2

𝐿𝐿 = 0
𝐿𝐿 = 1

emission of photon
ℏ𝜔𝜔 = ∆𝐸𝐸 = 𝐸𝐸f − 𝐸𝐸i

energy levels of an atom
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Selection rule
• Some of transitions are selected to occur: ∆𝐿𝐿 = 𝐿𝐿f − 𝐿𝐿i = ±1
• In this case, the selection rule is another name of conservation law.
• A photon carries angular momentum by an amount of spin 1, and 

the total angular momentum should be conserved, and hence we 
observe the rule ∆𝐿𝐿 = ±1.

allowed transition

forbidden transition

𝐿𝐿 = 1
𝐿𝐿 = 0

𝐿𝐿 = 2

𝐿𝐿 = 0
𝐿𝐿 = 1

emission of photon
ℏ𝜔𝜔 = ∆𝐸𝐸 = 𝐸𝐸f − 𝐸𝐸i

energy levels of an atom
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What is the superselection rule?
• There are various appearance (even various formulations) of the 

superselection rule.
• Originally, it was found in the context of relativistic quantum field 

theory by Wick, Wigner, and Wightman (WWW) in 1952.
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The statement of superselection rule
• There is a superselection charge �𝑸𝑸.
• If a self-adjoint operator �𝑨𝑨 represents a truly observable quantity, 

it must satisfy �𝑨𝑨, �𝑸𝑸 ≔ �𝑨𝑨�𝑸𝑸 − �𝑸𝑸�𝑨𝑨 = 𝟎𝟎.
• By contraposition, if �𝑨𝑨, �𝑸𝑸 ≠ 𝟎𝟎 for a self-adjoint operator �𝑨𝑨, 
�𝑨𝑨 does not represent a truly observable quantity. 

• The selection rule selects observable transitions of an atom.
• The superselection rule selects observable operators of a system.
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Example of application of the 
superselection rule

• complex scalar field:  �𝜙𝜙 𝑥𝑥

• conserved current:  ̂𝚥𝚥𝜇𝜇 𝑥𝑥 = −𝑖𝑖 �𝜙𝜙∗𝜕𝜕𝜇𝜇 �𝜙𝜙 + 𝑖𝑖 𝜕𝜕𝜇𝜇 �𝜙𝜙∗ �𝜙𝜙,   𝜕𝜕𝜇𝜇 ̂𝚥𝚥𝜇𝜇 = 0

• superselection charge:  �𝑄𝑄 ≔ ∫ ̂𝚥𝚥0𝑑𝑑3𝑥𝑥

• �𝑄𝑄, �𝜙𝜙 = −𝑖𝑖 �𝜙𝜙 ≠ 0 ⟹ �𝜙𝜙 itself is not observable.
• Neutral quantities like �𝜙𝜙∗ �𝜙𝜙 and ̂𝚥𝚥𝜇𝜇 can be observable.
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History of the superselection rule
• Around 1950, physicists discussed definition of the parity 

transformation of the Dirac field 𝜓𝜓 𝑥𝑥 . 
• parity transformation: 𝜓𝜓 𝒙𝒙, 𝑡𝑡 ↦ 𝛱𝛱𝜓𝜓 𝒙𝒙, 𝑡𝑡 = 𝑒𝑒𝑖𝑖𝜃𝜃𝛾𝛾0𝜓𝜓 −𝒙𝒙, 𝑡𝑡
• The phase factor 𝑒𝑒𝑖𝑖𝜃𝜃 is not uniquely determined, it has ambiguity.
• Yang, Tiomno, Zharkov proposed four types 𝑒𝑒𝑖𝑖𝜃𝜃 = ±1, ±𝑖𝑖.
• 1951, Fermi discussed how to distinguish the intrinsic parity 

exprimentarily.
• Wick, Wigner and Wightman noticed that the Dirac spinor itself 

cannot be measured, and hence we cannot determine its parity 
phase factor. 
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Univalence  superselection rule
• �𝑄𝑄 = �𝑅𝑅 2𝜋𝜋 : rotation by 360 degree around arbitrary axis.
• A measurable quantity 𝐴̂𝐴 must satisfy 

�𝑅𝑅 2𝜋𝜋 †𝐴̂𝐴 �𝑅𝑅 2𝜋𝜋 = 𝐴̂𝐴

or equivalently, 𝐴̂𝐴, �𝑄𝑄 = 0.
• On the other hand, the Dirac spinor field �𝜓𝜓 satisfies

�𝑅𝑅 2𝜋𝜋 † �𝜓𝜓 �𝑅𝑅 2𝜋𝜋 = − �𝜓𝜓.
• Thus, the Dirac spinor field �𝜓𝜓 itself is not a measurable quantity.
• However, �𝜓𝜓† �𝜓𝜓 is measurable.

12



Self-adjointness implies measurability?
• For the Dirac field �𝝍𝝍,

�𝝍𝝍 + �𝝍𝝍†, 𝒊𝒊 �𝝍𝝍 − �𝝍𝝍†

are formally self-adjoint, but it seems that they are non-
measurable.

• The gauge invariant quantities
�𝜓𝜓† �𝜓𝜓, �𝜓𝜓†𝛾𝛾𝜇𝜇 �𝜓𝜓

are formally self-adjoint and measurable.
• Not all of the self-adjoint operators represent observables?
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von Neumann’s postulate (1932)
• After showing that every observable is representable by a self-

adjoint operator, von Neumann argued that it is appropriate to 
assume that there is a physical observable corresponding to 
each self-adjoint operator.

observable�𝑨𝑨 ⇒ (⇐?) self-adjoint �𝑨𝑨† = �𝑨𝑨
• Original German expression by von Neumann (1932)

《... es ist zweckmässig anzunehmen, ...》
• English translation by Beyer (1955)

《... it is convenient to assume, ...》
• English translation by Wightman (1995)

《... it is appropriate to assume, ...》 14



Implication of the superselection rule
• There exist some operators that are self-adjoint but do not 

correspond to measurable quantities. 
• For the complex scalar field �𝜙𝜙,

�𝜙𝜙 + �𝜙𝜙†, 𝑖𝑖 �𝜙𝜙 − �𝜙𝜙† , �𝜙𝜙 �𝜙𝜙 �𝜙𝜙 + �𝜙𝜙† �𝜙𝜙† �𝜙𝜙†

are self-adjoint but non-measurable.
• For the Dirac field �𝜓𝜓,

�𝜓𝜓 + �𝜓𝜓†, 𝑖𝑖 �𝜓𝜓 − �𝜓𝜓†

are formally self-adjoint but non-measurable. 
• In what sense they are non-measurable?

15



Mathematical formulation of measurement
• Hilbert space of a microscopic object system: ℌ ∋ | ⟩𝛼𝛼
• Hilbert space of a measuring apparatus: ℜ ∋ | ⟩𝛽𝛽
• Hilbert space of the composite system: ℌ⨂ℜ ∋ | ⟩𝛼𝛼 ⨂| ⟩𝛽𝛽
• An observable of the object system 𝐴̂𝐴, self-adjoint operator on ℌ
• A meter observable of the apparatus �𝑀𝑀, self-adjoint operator on ℜ
• A unitary operator �𝑈𝑈 acting on ℌ⨂ℜ describes interaction of the two 

system and their time-evolution
| ⟩𝛼𝛼 ⨂| ⟩𝛽𝛽 ↦ �𝑈𝑈| ⟩𝛼𝛼 ⨂| ⟩𝛽𝛽

• Read out a value of the meter �1⨂ �𝑀𝑀 on the state �𝑈𝑈| ⟩𝛼𝛼 ⨂| ⟩𝛽𝛽 for 
inferring the value of 𝐴̂𝐴 on the state | ⟩𝛼𝛼 .
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Indirect-measurement model
• Read out a value of the meter �1⨂ �𝑀𝑀 on the state �𝑈𝑈| ⟩𝛼𝛼 ⨂| ⟩𝛽𝛽 for 

inferring the value of 𝐴̂𝐴 on the state | ⟩𝛼𝛼 .

• POVM (probability-operator valued measure)
�𝑃𝑃𝑀𝑀 𝑑𝑑𝜆𝜆 ≔ 𝛽𝛽 �𝑈𝑈† �1⨂�𝐸𝐸𝑀𝑀 𝑑𝑑𝜆𝜆 �𝑈𝑈 𝛽𝛽

• In the ideal measurement, �𝐸𝐸𝐴𝐴 𝑑𝑑𝜆𝜆 = �𝑃𝑃𝑀𝑀 𝑑𝑑𝜆𝜆 . But we do not demand 
that the measurement is ideal.

ℌ ⟶ ℌ⨂ℜ, | ⟩𝛼𝛼 ↦ �𝑈𝑈| ⟩𝛼𝛼 ⨂| ⟩𝛽𝛽

𝐴̂𝐴 ↓ �1⨂ �𝑀𝑀 ↓

ℌ ⇢ ℌ⨂ℜ

𝐴̂𝐴 = ∫ 𝜆𝜆 �𝐸𝐸𝐴𝐴 𝑑𝑑𝜆𝜆 , �𝑀𝑀 = ∫𝜆𝜆 �𝐸𝐸𝑀𝑀 𝑑𝑑𝜆𝜆 spectral decompositions
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von Neumann’s model of measurement
• Hilbert space of a microscopic object system: ℌ = 𝐿𝐿2 ℝ
• Hilbert space of a measuring apparatus: ℜ = 𝐿𝐿2 ℝ
• Hilbert space of the composite system: ℌ⨂ℜ
• An observable of the object system �𝑥𝑥, position operator on ℌ
• A meter observable of the apparatus �𝑋𝑋, position operator on ℜ
• A unitary operator �𝑈𝑈 = exp −𝑖𝑖 �𝑥𝑥⨂ �𝑃𝑃/ℏ with �𝑋𝑋, �𝑃𝑃 = 𝑖𝑖ℏ�1 yeilds

�𝑈𝑈† �1⨂ �𝑋𝑋 �𝑈𝑈 = �𝑋𝑋 + �𝑥𝑥.
The meter �𝑿𝑿 shifts by the amount of �𝒙𝒙. Hence, we can read out 
the position of the object particle from the meter position.

• This is not the ideal measurement. 18



Covariance condition
• Most of measurements are not ideal.
• What condition should be satisfied by a “good” measurement?
• In a good measurement, the meter follows a change of the object.
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Group action on the observables
• Assume that a group 𝐺𝐺 acts on the object Hilbert space ℌ by a 

projective unitary representation 𝑆̂𝑆𝑔𝑔 𝑔𝑔 ∈ 𝐺𝐺 .
• The group 𝐺𝐺 acts on the apparatus Hilbert space ℜ by a projective 

unitary representation �𝑇𝑇𝑔𝑔 𝑔𝑔 ∈ 𝐺𝐺 .
• Assume that there are sets of observables which transform

𝑆̂𝑆𝑔𝑔
†𝐴̂𝐴𝜇𝜇𝑆̂𝑆𝑔𝑔 = �

𝜈𝜈

𝐷𝐷𝜇𝜇𝜇𝜇𝐴𝐴 𝑔𝑔 𝐴̂𝐴𝜈𝜈 , �𝑇𝑇𝑔𝑔
† �𝑀𝑀𝑗𝑗 �𝑇𝑇𝑔𝑔 = �

𝑘𝑘

𝐷𝐷𝑗𝑗𝑗𝑗𝑀𝑀 𝑔𝑔 �𝑀𝑀𝑘𝑘

• For example, the group ℝ acts on the position operator as
𝑆̂𝑆𝑎𝑎

† �𝑥𝑥 𝑆̂𝑆𝑎𝑎 = �𝑥𝑥 + 𝑎𝑎�1
20



Covariant measurement
• Require that, for arbitrary action of 𝑔𝑔 ∈ 𝐺𝐺,

the meter transforms covariantly
𝑆̂𝑆𝑔𝑔
† �𝑈𝑈† �1⨂ �𝑀𝑀𝑗𝑗 �𝑈𝑈𝑆̂𝑆𝑔𝑔 = �𝑈𝑈† 𝑆̂𝑆𝑔𝑔

†⨂�𝑇𝑇𝑔𝑔
† �1⨂ �𝑀𝑀𝑗𝑗 𝑆̂𝑆𝑔𝑔⨂�𝑇𝑇𝑔𝑔 �𝑈𝑈

• Require also that the representations 𝐷𝐷𝐴𝐴 and 𝐷𝐷𝑀𝑀 are equivalent.

ℌ ⟶ ℌ⨂ℜ, | ⟩𝛼𝛼 ↦ �𝑈𝑈| ⟩𝛼𝛼 ⨂| ⟩𝛽𝛽

𝑆̂𝑆𝑔𝑔 ↓ 𝑆̂𝑆𝑔𝑔⨂�𝑇𝑇𝑔𝑔 ↓

ℌ ⇢ ℌ⨂ℜ

= �𝑈𝑈† 𝑆̂𝑆𝑔𝑔
†�1𝑆̂𝑆𝑔𝑔⨂�𝑇𝑇𝑔𝑔

† �𝑀𝑀𝑗𝑗 �𝑇𝑇𝑔𝑔 �𝑈𝑈

= �𝑈𝑈† �1⨂�𝑇𝑇𝑔𝑔
† �𝑀𝑀𝑗𝑗 �𝑇𝑇𝑔𝑔 �𝑈𝑈
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Main assumption: isolated conservation
Assume that the measurement process conserves the charges �𝑸𝑸𝜿𝜿
which generate the unitary transformation 𝑆̂𝑆𝜃𝜃 = 𝑒𝑒𝑖𝑖�𝑸𝑸𝜿𝜿𝜽𝜽𝜿𝜿 of the object 
system, namely, assume

Then,

Therefore, the covariant meter must obey the trivial representation.

�𝑈𝑈†𝑆̂𝑆𝑔𝑔
† �1⨂ �𝑀𝑀𝑗𝑗 𝑆̂𝑆𝑔𝑔 �𝑈𝑈 =

�𝑈𝑈† 𝑆̂𝑆𝑔𝑔
†𝑆̂𝑆𝑔𝑔⨂ �𝑀𝑀𝑗𝑗 �𝑈𝑈 =
�𝑈𝑈† �1⨂ �𝑀𝑀𝑗𝑗 �𝑈𝑈 =

𝑆̂𝑆𝑔𝑔
† �𝑈𝑈† �1⨂ �𝑀𝑀𝑗𝑗 �𝑈𝑈𝑆̂𝑆𝑔𝑔 = �𝑈𝑈† �1⨂�𝑇𝑇𝑔𝑔

† �𝑀𝑀𝑗𝑗 �𝑇𝑇𝑔𝑔 �𝑈𝑈

�𝑈𝑈𝑆̂𝑆𝑔𝑔 = 𝑆̂𝑆𝑔𝑔 �𝑈𝑈.
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Main result: superselection rule
The observable �𝑨𝑨 of the object system that is measurable with a 
meter that is covariant under the group 𝑮𝑮 generated by the 
charges �𝑸𝑸𝜿𝜿 that is a conserved during the measurement process, 
must obey the trivial representation of the group:

or
�𝑺𝑺𝒈𝒈
† �𝑨𝑨�𝑺𝑺𝒈𝒈 = �𝑨𝑨

�𝑸𝑸𝜿𝜿, �𝑨𝑨 = 𝟎𝟎
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Relation with the uncertainty relation
• If two self-adjoint operotors 𝐴̂𝐴 and �𝐵𝐵 do not commute, namely, if 
𝐴̂𝐴, �𝐵𝐵 = 0, there is no CONS (complete orthonormal system of the 

Hilbert space) that diagonalizes operotors 𝐴̂𝐴 and �𝐵𝐵 simultaneously. 
• It is often said “measurement of �𝑨𝑨 inevitably disturbs the value of 
�𝑩𝑩.”

• If �𝑩𝑩 is a conserved quantity, the value of �𝑩𝑩 cannot be changed. 
In this case, is measurement of �𝑨𝑨 imposible?

• Qualitative answer (Wigner, Araki, Yanase): 
precise measurement of �𝑨𝑨 is impossible. (This is a gentle version 
of the superselection rule.)

• Quantitative answer (Ozawa): 24



Definitions
• 𝐴̂𝐴 and �𝐵𝐵 : observables self-adjoint operators on ℌ ∋ | ⟩𝛼𝛼
• �𝑀𝑀 : meter, self-adjoint operator on ℜ ∋ | ⟩𝛽𝛽
• �𝑈𝑈 : unitary operator on ℌ⨂ℜ ∋ | ⟩𝛼𝛼 ⨂| ⟩𝛽𝛽

• expectation value 𝐴̂𝐴 ≔ 𝛼𝛼 𝐴̂𝐴 𝛼𝛼

• standard deviation 𝜎𝜎 𝐴̂𝐴 ≔ 𝐴̂𝐴 − 𝐴̂𝐴 2 = 𝐴̂𝐴2 − 𝐴̂𝐴 2
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Ozawa’s formulation of the uncertainty relation
• error operator �𝐸𝐸 ≔ �𝑈𝑈† �𝑀𝑀�𝑈𝑈 − 𝐴̂𝐴

• error in the measurement of 𝐴̂𝐴, 𝜀𝜀 𝐴̂𝐴 ≔ �𝐸𝐸2

• disturbance operator �𝐷𝐷 ≔ �𝑈𝑈† �𝐵𝐵�𝑈𝑈 − �𝐵𝐵

• disturbance associated with the measurement, 𝜂𝜂 �𝐵𝐵 ≔ �𝐷𝐷2

• Ozawa’s inequality

𝜀𝜀 𝐴̂𝐴 𝜂𝜂 �𝐵𝐵 + 𝜀𝜀 𝐴̂𝐴 𝜎𝜎 �𝐵𝐵 + 𝜎𝜎 𝐴̂𝐴 𝜂𝜂 �𝐵𝐵 ≥
1
2

𝐴̂𝐴, �𝐵𝐵
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Proof of Ozawa’s inequality (1/2)
By definitions,
• �𝐸𝐸 ≔ �𝑈𝑈† �𝑀𝑀�𝑈𝑈 − 𝐴̂𝐴 ,  �𝑈𝑈† �𝑀𝑀�𝑈𝑈 = �𝐸𝐸 + 𝐴̂𝐴
• �𝐷𝐷 = �𝑈𝑈† �𝐵𝐵�𝑈𝑈 − �𝐵𝐵 ,  �𝑈𝑈† �𝐵𝐵�𝑈𝑈 = �𝐷𝐷 + �𝐵𝐵

• �𝑀𝑀, �𝐵𝐵 = �1⨂ �𝑀𝑀, �𝐵𝐵⨂�1 = 0, 

Therefore

= �𝐸𝐸, �𝐷𝐷 + �𝐸𝐸, �𝐵𝐵 + 𝐴̂𝐴, �𝐷𝐷 + 𝐴̂𝐴, �𝐵𝐵

∴ �𝐸𝐸, �𝐷𝐷 + �𝐸𝐸, �𝐵𝐵 + 𝐴̂𝐴, �𝐷𝐷 = − 𝐴̂𝐴, �𝐵𝐵

= �𝐸𝐸 + 𝐴̂𝐴, �𝐷𝐷 + �𝐵𝐵

= �𝑈𝑈† �𝑀𝑀�𝑈𝑈, �𝑈𝑈† �𝐵𝐵�𝑈𝑈0 = �𝑈𝑈† �𝑀𝑀, �𝐵𝐵 �𝑈𝑈
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Proof of Ozawa’s inequality (2/2)
• The Kennard-Robertson inequality:  𝜎𝜎 𝐴̂𝐴 𝜎𝜎 �𝐵𝐵 ≥ 1

2
𝐴̂𝐴, �𝐵𝐵

• 𝜀𝜀 𝐴̂𝐴 ≔ �𝐸𝐸2 ≥ �𝐸𝐸2 − �𝐸𝐸 2 = 𝜎𝜎 �𝐸𝐸

• 𝜂𝜂 �𝐵𝐵 ≔ �𝐷𝐷2 ≥ �𝐷𝐷2 − �𝐷𝐷 2 = 𝜎𝜎 �𝐷𝐷

From �𝐸𝐸, �𝐷𝐷 + �𝐸𝐸, �𝐵𝐵 + 𝐴̂𝐴, �𝐷𝐷 = − 𝐴̂𝐴, �𝐵𝐵 ,

𝜎𝜎 �𝐸𝐸 𝜎𝜎 �𝐷𝐷 + 𝜎𝜎 �𝐸𝐸 𝜎𝜎 �𝐵𝐵 + 𝜎𝜎 𝐴̂𝐴 𝜎𝜎 �𝐷𝐷 ≥ 𝜎𝜎 𝐴̂𝐴 𝜎𝜎 �𝐵𝐵

∴ 𝜀𝜀 𝐴̂𝐴 𝜂𝜂 �𝐵𝐵 + 𝜀𝜀 𝐴̂𝐴 𝜎𝜎 �𝐵𝐵 + 𝜎𝜎 𝐴̂𝐴 𝜂𝜂 �𝐵𝐵 ≥ ⋯ ≥
1
2

𝐴̂𝐴, �𝐵𝐵
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Uncertainty relation with a conserved quantity
• If �𝐵𝐵 = �𝑄𝑄object + �𝑄𝑄apparatus = �𝑄𝑄object⨂�1 + �1⨂ �𝑄𝑄apparatus is conserved, 

then the disturbance 𝜂𝜂 �𝐵𝐵 = 0, and hence

• Lower bound of the error in the measurement of the observable that 
does not commute with the additive conserved quantity is given by

𝜀𝜀 𝐴̂𝐴 𝜎𝜎 �𝑄𝑄object + �𝑄𝑄apparatus ≥
1
2

𝐴̂𝐴, �𝑄𝑄object + �𝑄𝑄apparatus

=
1
2

𝐴̂𝐴, �𝑄𝑄object

𝜀𝜀 𝐴̂𝐴 ≥
𝐴̂𝐴, �𝑄𝑄object

2

4 𝜎𝜎 �𝑄𝑄object
2 + 𝜎𝜎 �𝑄𝑄apparatus

2
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Comparison
• The WAY-Ozawa relation holds when �𝑸𝑸𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨 + �𝑸𝑸𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚 is 

conserved in the process of measurement:

• The superselection rule holds when �𝑸𝑸𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨 and �𝑸𝑸𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚 are 
conserved individually:

• In this sense, the superselection rule can be regarded as an 
extreme case of the uncertainty relation.

𝜀𝜀 𝐴̂𝐴 ≥
�𝐴𝐴, �𝑄𝑄object

2

4 𝜎𝜎 �𝑄𝑄object
2+𝜎𝜎 �𝑄𝑄apparatus

2 ≠ 0 ⟹No precise measurements

𝐴̂𝐴, �𝑄𝑄object ≠ 0 ⟹ No covariant measurements of 𝐴̂𝐴
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Superselection sectors
• In general, the unitary representation 𝑆̂𝑆𝑔𝑔 of 𝑔𝑔 ∈ 𝐺𝐺 admits a nontrivial 

cohomology: 
𝑆̂𝑆𝑔𝑔1 ∘ 𝑆̂𝑆𝑔𝑔2 = 𝐶̂𝐶 𝑔𝑔1,𝑔𝑔2 𝑆̂𝑆𝑔𝑔1∘𝑔𝑔2

• 𝐶̂𝐶 𝑔𝑔1,𝑔𝑔2 is commutative with all the measurable observables and 
with 𝑆̂𝑆𝑔𝑔 | 𝑔𝑔 ∈ 𝐺𝐺 .

• 𝜌𝜌,𝑉𝑉𝜌𝜌 : irreducible projective unitary representation of 𝐺𝐺. Then
ℌ = ⊕𝜌𝜌 ℌ𝜌𝜌 = ⊕𝜌𝜌 𝑉𝑉𝜌𝜌⨂𝑊𝑊𝜌𝜌 , 𝑆̂𝑆𝑔𝑔 = ⊕𝜌𝜌 �𝜌𝜌𝑔𝑔⨂�1

summation is taken over inequivalent irreducible projective unitary 
representations.

• Each subspace ℌ𝜌𝜌 defines a sector.
31



Absence of interference term
• The Hilbert space is decomposed accordingly to irreducible 

projective unitary representations of 𝐺𝐺:
ℌ = ⊕𝜌𝜌 ℌ𝜌𝜌 = ⊕𝜌𝜌 𝑉𝑉𝜌𝜌⨂𝑊𝑊𝜌𝜌 , 𝑆̂𝑆𝑔𝑔 =⊕𝜌𝜌 �𝜌𝜌𝑔𝑔⨂�1

summation is taken over inequivalent irreducible projective unitary 
representations.

• Under the superselection rule, “measurable observable” 𝐴̂𝐴 satifying 
𝐴̂𝐴𝑆̂𝑆𝑔𝑔 = 𝑆̂𝑆𝑔𝑔𝐴̂𝐴 should have a form 𝐴̂𝐴 =⊕𝜌𝜌 �1⨂𝐴𝐴𝜌𝜌 .

• If 𝜌𝜌1 and 𝜌𝜌2 are in-equivalent representation of 𝐺𝐺, and if | ⟩𝜓𝜓1 ∈ ℌ𝜌𝜌1
and | ⟩𝜓𝜓2 ∈ ℌ𝜌𝜌2 , then

𝜓𝜓1 + 𝜓𝜓2 𝐴̂𝐴 𝜓𝜓1 + 𝜓𝜓2 = 𝜓𝜓1 𝐴̂𝐴 𝜓𝜓1 + 𝜓𝜓2 𝐴̂𝐴 𝜓𝜓2 .
Interference term 𝝍𝝍𝟏𝟏 �𝑨𝑨 𝝍𝝍𝟐𝟐 between different sectors vanishes.32



Summary
• The superselection rule is derived from the viewpoint of 

measurement.
• When the object system admits action of a group 𝑮𝑮, if the meter 

is required to be covariant under the action of 𝑮𝑮, and if the 
generator of the 𝑮𝑮-action is conserved within the object system, 
the measurable quantity �𝑨𝑨must satisfy the superselection rule, 
�𝑺𝑺𝒈𝒈
† �𝑨𝑨�𝑺𝑺𝒈𝒈 = �𝑨𝑨 or �𝑸𝑸𝜿𝜿, �𝑨𝑨 = 𝟎𝟎.

• The superselection rule forbids disturbance of the 
superselection charge, so it is regarded as an extreme case of 
the uncertainty relation with additive conservation charge.

• Absence (or non-observability) of interference of different sector 
is explained. 33



Remaining problems
• Spontaneous symmetry breaking
• Local gauge symmetry
• Color confinement?
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ご清聴ありがとうございました。
Thank you for your attention.
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