Colloquium at Quantum Field and String Theory Group, Humboldt-Universität zu Berlin January 16, 2023

11am Berlin time = 7pm Nagoya time

Superselection rule from measurement theory

Shogo Tanimura Nagoya University, Japan

Reference: https://arxiv.org/abs/1112.5701

Introduction of myself

- 1967, born in Nagoya, that is a city located between Tokyo and Osaka. Toyota city is in the same prefecture.
- 1990, finish the undergraduate course of Department of Applied Physics, Nagoya University (adviser: Haga)
- 1995, got PhD. degree, at E-lab, Department of Physics, Nagoya University (adviser: Ohnuki, Kitakado, Sanda, Yamawaki)
- JSPS Posdoc at University of Tokyo (host: Eguchi)
- Got job at Kyoto University, Osaka City University, again Kyoto University
- 2011, came back to Nagoya University

Visits to Germany

- Fist visit to Max-Planck Institute in Heidelberg
- Second visit to University of Göttingen to deliver seminars at Dr. Karl-Henning Rehren's and Dr. Ralf Meyer's groups, in 2012.

Research interests

- Quantum Foundations
- Quantum Information Theory
- Dynamical Systems
- Statistical Mechanics
- Differential Geometry
- Category Theory
- Artificial Intelligence

Today's Topic

• Superselection rule in quantum theory from the viewpoint of measurement theory

Selection rule

- Originally, the selection rule was found in spectrum of atoms.
- Some of photonic transitions do not occur even though they are allowed by energy conservation.
- Selection rule: $\Delta L = L_f L_i = \pm 1$
- Some of transitions (for example $\Delta L = \pm 2$) are not allowed by angular-momentum conservation.

Selection rule

- Some of transitions are selected to occur: $\Delta L = L_f L_i = \pm 1$
- In this case, the selection rule is another name of conservation law.
- A photon carries angular momentum by an amount of spin 1, and the total angular momentum should be conserved, and hence we observe the rule $\Delta L = \pm 1$.

What is the superselection rule?

- There are various appearance (even various formulations) of the superselection rule.
- Originally, it was found in the context of relativistic quantum field theory by Wick, Wigner, and Wightman (WWW) in 1952.

The statement of superselection rule

- There is a superselection charge \widehat{Q} .
- If a self-adjoint operator \widehat{A} represents a *truly observable* quantity, it must satisfy $[\widehat{A}, \widehat{Q}] \coloneqq \widehat{A}\widehat{Q} \widehat{Q}\widehat{A} = 0$.
- By contraposition, if $[\widehat{A}, \widehat{Q}] \neq 0$ for a self-adjoint operator \widehat{A} , \widehat{A} does not represent a truly observable quantity.
- The **selection rule** selects observable transitions of an atom.
- The superselection rule selects observable operators of a system.

Example of application of the superselection rule

- complex scalar field: $\hat{\phi}(x)$
- conserved current: $\hat{j}_{\mu}(x) = -i\hat{\phi}^*\partial_{\mu}\hat{\phi} + i(\partial_{\mu}\hat{\phi}^*)\hat{\phi}, \quad \partial_{\mu}\hat{j}^{\mu} = 0$
- superselection charge: $\hat{Q} \coloneqq \int \hat{j}^0 d^3x$
- $[\hat{Q}, \hat{\phi}] = -i\hat{\phi} \neq 0 \implies \hat{\phi}$ itself is not observable.
- Neutral quantities like $\hat{\phi}^*\hat{\phi}$ and $\hat{\jmath}_\mu$ can be observable.

History of the superselection rule

- Around 1950, physicists discussed definition of the parity transformation of the Dirac field $\psi(x)$.
- parity transformation: $\psi(x,t) \mapsto \Pi \psi(x,t) = e^{i\theta} \gamma^0 \psi(-x,t)$
- The phase factor $e^{i\theta}$ is not uniquely determined, it has ambiguity.
- Yang, Tiomno, Zharkov proposed four types $e^{i\theta} = \pm 1, \pm i$.
- 1951, Fermi discussed how to distinguish the intrinsic parity exprimentarily.
- Wick, Wigner and Wightman noticed that the Dirac spinor itself cannot be measured, and hence we cannot determine its parity phase factor.

Univalence superselection rule

- $\hat{Q} = \hat{R}(2\pi)$: rotation by 360 degree around arbitrary axis.
- A measurable quantity \hat{A} must satisfy

 $\hat{R}(2\pi)^{\dagger}\hat{A}\,\hat{R}(2\pi)=\hat{A}$

or equivalently, $[\hat{A}, \hat{Q}] = 0$.

- On the other hand, the Dirac spinor field $\hat{\psi}$ satisfies

 $\hat{R}(2\pi)^{\dagger}\,\hat{\psi}\,\hat{R}(2\pi)=-\hat{\psi}.$

- Thus, the Dirac spinor field $\hat{\psi}$ itself is not a measurable quantity.
- However, $\hat{\psi}^{\dagger}\hat{\psi}$ is measurable.

Self-adjointness implies measurability?

• For the Dirac field $\widehat{\psi}$,

$$\widehat{oldsymbol{\psi}}+\widehat{oldsymbol{\psi}}^{\dagger}$$
, $oldsymbol{i}ig(\widehat{oldsymbol{\psi}}-\widehat{oldsymbol{\psi}}^{\dagger}ig)$

are formally self-adjoint, but it seems that they are nonmeasurable.

• The gauge invariant quantities

 $\hat{\psi}^{\dagger}\hat{\psi}$, $\hat{\psi}^{\dagger}\gamma^{\mu}\hat{\psi}$

are formally self-adjoint and measurable.

Not all of the self-adjoint operators represent observables?

von Neumann's postulate (1932)

 After showing that every observable is representable by a selfadjoint operator, von Neumann argued that it is appropriate to assume that there is a physical observable corresponding to each self-adjoint operator.

observable $\widehat{A} \Rightarrow (\Leftarrow ?)$ self-adjoint $\widehat{A}^{\dagger} = \widehat{A}$

- Original German expression by von Neumann (1932)

 «... es ist zweckmässig anzunehmen, ...)
- English translation by Beyer (1955)

 <u>«... it is convenient to assume, ...</u>
- English translation by Wightman (1995)

 <u>it is appropriate to assume, ...</u>
 <u>>
 </u>

Implication of the superselection rule

- There exist some operators that are self-adjoint but do not correspond to measurable quantities.
- For the complex scalar field $\widehat{\phi}$,

$$\hat{\phi} + \hat{\phi}^{\dagger}$$
, $i(\hat{\phi} - \hat{\phi}^{\dagger})$, $\hat{\phi}\hat{\phi}\hat{\phi} + \hat{\phi}^{\dagger}\hat{\phi}^{\dagger}\hat{\phi}^{\dagger}$

are self-adjoint but non-measurable.

• For the Dirac field $\widehat{\psi}$,

$$\widehat{\psi} + \widehat{\psi}^{\dagger}$$
, $i(\widehat{\psi} - \widehat{\psi}^{\dagger})$

are formally self-adjoint but non-measurable.

• In what sense they are non-measurable?

Mathematical formulation of measurement

- Hilbert space of a **microscopic object system**: $\mathfrak{H} \ni |\alpha\rangle$
- Hilbert space of a **measuring apparatus**: $\Re \ni |\beta\rangle$
- Hilbert space of **the composite system**: $\mathfrak{H} \otimes \mathfrak{R} \ni |\alpha\rangle \otimes |\beta\rangle$
- An observable of the object system \hat{A} , self-adjoint operator on \mathfrak{H}
- A meter observable of the apparatus \widehat{M} , self-adjoint operator on \Re
- A unitary operator \widehat{U} acting on $\mathfrak{H}\otimes\mathfrak{R}$ describes interaction of the two system and their time-evolution

 $|\alpha\rangle \otimes |\beta\rangle \ \mapsto \ \widehat{U}|\alpha\rangle \otimes |\beta\rangle$

• Read out a value of the meter $\widehat{1} \otimes \widehat{M}$ on the state $\widehat{U}|\alpha\rangle \otimes |\beta\rangle$ for inferring the value of \widehat{A} on the state $|\alpha\rangle$.

Indirect-measurement model

• Read out a value of the meter $\widehat{1} \otimes \widehat{M}$ on the state $\widehat{U}|\alpha\rangle \otimes |\beta\rangle$ for inferring the value of \widehat{A} on the state $|\alpha\rangle$.

$$\begin{split} \mathfrak{H} &\longrightarrow \mathfrak{H} \otimes \mathfrak{R}, \qquad |\alpha\rangle \mapsto \widehat{U}|\alpha\rangle \otimes |\beta\rangle \\ \widehat{A} \downarrow & \widehat{1} \otimes \widehat{M} \downarrow \qquad \widehat{A} = \int \lambda \, \widehat{E}_A(d\lambda) \,, \, \widehat{M} = \int \lambda \, \widehat{E}_M(d\lambda) \, \text{spectral decompositions} \\ \mathfrak{H} &\longrightarrow \mathfrak{H} \otimes \mathfrak{R} \end{split}$$

• POVM (probability-operator valued measure)

$$\widehat{P}_{M}(d\lambda) \coloneqq \left\langle \beta \left| \widehat{U}^{\dagger} \left(\widehat{1} \otimes \widehat{E}_{M}(d\lambda) \right) \widehat{U} \right| \beta \right\rangle$$

• In the ideal measurement, $\hat{E}_A(d\lambda) = \hat{P}_M(d\lambda)$. But we do not demand that the measurement is ideal.

von Neumann's model of measurement

- Hilbert space of a microscopic object system: $\mathfrak{H} = L^2(\mathbb{R})$
- Hilbert space of a measuring apparatus: $\Re = L^2(\mathbb{R})$
- Hilbert space of the composite system: $\mathfrak{H} \otimes \mathfrak{R}$
- An observable of the object system \hat{x} , position operator on \mathfrak{H}
- A meter observable of the apparatus \hat{X} , position operator on \Re
- A unitary operator $\widehat{U} = \exp(-i\widehat{x}\otimes\widehat{P}/\hbar)$ with $[\widehat{X},\widehat{P}] = i\hbar\widehat{1}$ yields $\widehat{U}^{\dagger}(\widehat{1}\otimes\widehat{X})\widehat{U} = \widehat{X} + \widehat{x}.$

The meter \hat{X} shifts by the amount of \hat{x} . Hence, we can read out the position of the object particle from the meter position.

• This is not the ideal measurement.

Covariance condition

- Most of measurements are not ideal.
- What condition should be satisfied by a "good" measurement?
- In a good measurement, the meter follows a change of the object.

Group action on the observables

- Assume that a group G acts on the object Hilbert space \mathfrak{H} by a projective unitary representation \hat{S}_g ($g \in G$).
- The group G acts on the apparatus Hilbert space \Re by a projective unitary representation \hat{T}_g ($g \in G$).
- Assume that there are sets of observables which transform

$$\hat{S}_g^{\dagger} \hat{A}_{\mu} \hat{S}_g = \sum_{\nu} D_{\mu\nu}^A(g) \hat{A}_{\nu}, \qquad \hat{T}_g^{\dagger} \hat{M}_j \hat{T}_g = \sum_k D_{jk}^M(g) \hat{M}_k$$

 \bullet For example, the group ${\mathbb R}\,$ acts on the position operator as

$$\hat{S}_a^{\dagger} \hat{x} \, \hat{S}_a = \hat{x} + a\hat{1}$$

Covariant measurement

• Require that, for arbitrary action of $g \in G$,

$$\begin{split} \mathfrak{H} & \longrightarrow \mathfrak{H} \otimes \mathfrak{R}, \qquad |\alpha\rangle \mapsto \widehat{U}|\alpha\rangle \otimes |\beta\rangle \\ \widehat{S}_{g} \downarrow & \widehat{S}_{g} \otimes \widehat{T}_{g} \downarrow \\ \mathfrak{H} & \qquad \mathfrak{H} & \qquad \mathfrak{H} & \qquad \mathfrak{H} \end{split}$$

the meter transforms covariantly

 $\hat{S}_{g}^{\dagger} \widehat{U}^{\dagger} (\widehat{1} \otimes \widehat{M}_{j}) \widehat{U} \hat{S}_{g} = \widehat{U}^{\dagger} (\hat{S}_{g}^{\dagger} \otimes \widehat{T}_{g}^{\dagger}) (\widehat{1} \otimes \widehat{M}_{j}) (\hat{S}_{g} \otimes \widehat{T}_{g}) \widehat{U}$ $= \widehat{U}^{\dagger} (\hat{S}_{g}^{\dagger} \widehat{1} \hat{S}_{g} \otimes \widehat{T}_{g}^{\dagger} \widehat{M}_{j} \widehat{T}_{g}) \widehat{U}$ $= \widehat{U}^{\dagger} (\widehat{1} \otimes \widehat{T}_{g}^{\dagger} \widehat{M}_{j} \widehat{T}_{g}) \widehat{U}$

• Require also that the representations D^A and D^M are equivalent.

Main assumption: isolated conservation

Assume that the measurement process conserves the charges \hat{Q}_{κ} which generate the unitary transformation $\hat{S}_{\theta} = e^{i\hat{Q}_{\kappa}\theta_{\kappa}}$ of the object system, namely, assume

$$\widehat{U}\widehat{S}_g = \widehat{S}_g\widehat{U}.$$

Then,

$$\begin{aligned} \hat{S}_{g}^{\dagger} \hat{U}^{\dagger} (\hat{1} \otimes \widehat{M}_{j}) \hat{U} \hat{S}_{g} &= \hat{U}^{\dagger} (\hat{1} \otimes \widehat{T}_{g}^{\dagger} \widehat{M}_{j} \hat{T}_{g}) \hat{U} \\ \hat{U}^{\dagger} \hat{S}_{g}^{\dagger} (\hat{1} \otimes \widehat{M}_{j}) \hat{S}_{g} \hat{U} &= \\ \hat{U}^{\dagger} (\hat{S}_{g}^{\dagger} \hat{S}_{g} \otimes \widehat{M}_{j}) \hat{U} &= \\ \hat{U}^{\dagger} (\hat{1} \otimes \widehat{M}_{j}) \hat{U} &= \end{aligned}$$

Therefore, the covariant meter must obey the trivial representation.

Main result: superselection rule

The observable \widehat{A} of the object system that is measurable with a meter that is covariant under the group *G* generated by the charges \widehat{Q}_{κ} that is a conserved during the measurement process, must obey the trivial representation of the group:

$$\widehat{S}_{g}^{\dagger}\widehat{A}\widehat{S}_{g}=\widehat{A}$$

or

$$\left[\widehat{\boldsymbol{Q}}_{\kappa},\widehat{\boldsymbol{A}}
ight]=\mathbf{0}$$

Relation with the uncertainty relation

- If two self-adjoint operators \hat{A} and \hat{B} do not commute, namely, if $[\hat{A}, \hat{B}] = 0$, there is no CONS (complete orthonormal system of the Hilbert space) that diagonalizes operators \hat{A} and \hat{B} simultaneously.
- It is often said "measurement of \widehat{A} inevitably disturbs the value of \widehat{B} ."
- If \widehat{B} is a conserved quantity, the value of \widehat{B} cannot be changed. In this case, is measurement of \widehat{A} imposible?
- Qualitative answer (Wigner, Araki, Yanase): precise measurement of is impossible. (This is a gentle version of the superselection rule.)
- Quantitative answer (Ozawa):

Definitions

- \hat{A} and \hat{B} : observables self-adjoint operators on $\mathfrak{H} \ni |\alpha\rangle$
- \widehat{M} : meter, self-adjoint operator on $\Re \ni |\beta\rangle$
- \widehat{U} : unitary operator on $\mathfrak{H} \otimes \mathfrak{R} \ni |\alpha\rangle \otimes |\beta\rangle$
- expectation value $\langle \hat{A} \rangle \coloneqq \langle \alpha | \hat{A} | \alpha \rangle$

• standard deviation
$$\sigma(\hat{A}) \coloneqq \sqrt{\langle (\hat{A} - \langle \hat{A} \rangle)^2 \rangle} = \sqrt{\langle \hat{A}^2 \rangle - \langle \hat{A} \rangle^2}$$

Ozawa's formulation of the uncertainty relation

- error operator $\hat{E} \coloneqq \hat{U}^{\dagger} \hat{M} \hat{U} \hat{A}$
- error in the measurement of \hat{A} , $\varepsilon(\hat{A}) \coloneqq \sqrt{\langle \hat{E}^2 \rangle}$
- disturbance operator $\widehat{D} \coloneqq \widehat{U}^{\dagger} \widehat{B} \widehat{U} \widehat{B}$
- disturbance associated with the measurement, $\eta(\widehat{B})\coloneqq \langle \widehat{D}^2 \rangle$
- Ozawa's inequality

$$\varepsilon(\hat{A})\eta(\hat{B}) + \varepsilon(\hat{A})\sigma(\hat{B}) + \sigma(\hat{A})\eta(\hat{B}) \ge \frac{1}{2}|\langle [\hat{A}, \hat{B}] \rangle|$$

Proof of Ozawa's inequality (1/2)

By definitions,

• $\hat{E} \coloneqq \hat{U}^{\dagger} \hat{M} \hat{U} - \hat{A}$, $\hat{U}^{\dagger} \hat{M} \hat{U} = \hat{E} + \hat{A}$

- $\widehat{D}=\widehat{U}^{\dagger}\widehat{B}\widehat{U}-\widehat{B}$, $\widehat{U}^{\dagger}\widehat{B}\widehat{U}=\widehat{D}+\widehat{B}$
- $\left[\widehat{M}, \widehat{B}\right] = \left[\widehat{1} \otimes \widehat{M}, \widehat{B} \otimes \widehat{1}\right] = 0,$

Therefore $0 = \widehat{U}^{\dagger} [\widehat{M}, \widehat{B}] \widehat{U} = [\widehat{U}^{\dagger} \widehat{M} \widehat{U}, \widehat{U}^{\dagger} \widehat{B} \widehat{U}]$ $= [\widehat{E} + \widehat{A}, \widehat{D} + \widehat{B}]$ $= [\widehat{E}, \widehat{D}] + [\widehat{E}, \widehat{B}] + [\widehat{A}, \widehat{D}] + [\widehat{A}, \widehat{B}]$

Proof of Ozawa's inequality (2/2)

• The Kennard-Robertson inequality: $\sigma(\hat{A})\sigma(\hat{B}) \ge \frac{1}{2}|\langle [\hat{A}, \hat{B}] \rangle|$

•
$$\varepsilon(\hat{A}) \coloneqq \sqrt{\langle \hat{E}^2 \rangle} \ge \sqrt{\langle \hat{E}^2 \rangle - \langle \hat{E} \rangle^2} = \sigma(\hat{E})$$

• $\eta(\hat{B}) \coloneqq \sqrt{\langle \hat{D}^2 \rangle} \ge \sqrt{\langle \hat{D}^2 \rangle - \langle \hat{D} \rangle^2} = \sigma(\hat{D})$
From $[\hat{E}, \hat{D}] + [\hat{E}, \hat{B}] + [\hat{A}, \hat{D}] = -[\hat{A}, \hat{B}],$
 $\sigma(\hat{E})\sigma(\hat{D}) + \sigma(\hat{E})\sigma(\hat{B}) + \sigma(\hat{A})\sigma(\hat{D}) \ge \sigma(\hat{A})\sigma(\hat{B})$
 $\therefore \varepsilon(\hat{A})\eta(\hat{B}) + \varepsilon(\hat{A})\sigma(\hat{B}) + \sigma(\hat{A})\eta(\hat{B}) \ge \cdots \ge \frac{1}{2}|\langle [\hat{A}, \hat{B}] \rangle$

Uncertainty relation with a conserved quantity

• If $\hat{B} = \hat{Q}_{\text{object}} + \hat{Q}_{\text{apparatus}} = \hat{Q}_{\text{object}} \otimes \hat{1} + \hat{1} \otimes \hat{Q}_{\text{apparatus}}$ is conserved, then the disturbance $\eta(\hat{B}) = 0$, and hence

$$\begin{split} \varepsilon(\hat{A})\sigma(\hat{Q}_{\text{object}} + \hat{Q}_{\text{apparatus}}) &\geq \frac{1}{2} |\langle [\hat{A}, \hat{Q}_{\text{object}} + \hat{Q}_{\text{apparatus}}] \rangle | \\ &= \frac{1}{2} |\langle [\hat{A}, \hat{Q}_{\text{object}}] \rangle | \end{split}$$

• Lower bound of the error in the measurement of the observable that does not commute with the additive conserved quantity is given by

$$\varepsilon(\hat{A}) \ge \frac{\left|\left\langle \left[\hat{A}, \hat{Q}_{\text{object}}\right]\right\rangle\right|^{2}}{4\left\{\left(\sigma(\hat{Q}_{\text{object}})^{2} + \sigma(\hat{Q}_{\text{apparatus}})^{2}\right)\right\}}$$

Comparison

• The WAY-Ozawa relation holds when $\hat{Q}_{object} + \hat{Q}_{apparatus}$ is conserved in the process of measurement:

$$\varepsilon(\hat{A}) \ge \frac{\left|\left\langle \left[\hat{A}, \hat{Q}_{object}\right]\right\rangle\right|^{2}}{4\left\{\left(\sigma(\hat{Q}_{object})^{2} + \sigma(\hat{Q}_{apparatus})^{2}\right)\right\}} \neq 0 \quad \Longrightarrow \text{ No precise measurements}$$

• The superselection rule holds when \hat{Q}_{object} and $\hat{Q}_{apparatus}$ are conserved individually:

$$[\hat{A}, \hat{Q}_{object}] \neq 0 \implies$$
 No covariant measurements of \hat{A}

 In this sense, the superselection rule can be regarded as an extreme case of the uncertainty relation.

Superselection sectors

• In general, the unitary representation \hat{S}_g of $g \in G$ admits a nontrivial cohomology:

$$\hat{S}_{g_1} \circ \hat{S}_{g_2} = \hat{C}(g_1, g_2) \, \hat{S}_{g_1 \circ g_2}$$

- $\hat{C}(g_1, g_2)$ is commutative with all the measurable observables and with $\{\hat{S}_g \mid g \in G\}$.
- (ρ, V_{ρ}) : irreducible projective unitary representation of G. Then

$$\mathfrak{H} = \bigoplus_{\rho} \mathfrak{H}_{\rho} = \bigoplus_{\rho} (V_{\rho} \otimes W_{\rho}), \qquad \hat{S}_{g} = \bigoplus_{\rho} (\hat{\rho}_{g} \otimes \hat{1})$$

summation is taken over inequivalent irreducible projective unitary representations.

• Each subspace \mathfrak{H}_{ρ} defines a sector.

Absence of interference term

• The Hilbert space is decomposed accordingly to irreducible projective unitary representations of *G*:

$$\mathfrak{H} = \bigoplus_{\rho} \mathfrak{H}_{\rho} = \bigoplus_{\rho} \left(V_{\rho} \otimes W_{\rho} \right), \qquad \hat{S}_{g} = \bigoplus_{\rho} \left(\hat{\rho}_{g} \otimes \hat{1} \right)$$

summation is taken over inequivalent irreducible projective unitary representations.

- Under the superselection rule, "measurable observable" \hat{A} satifying $\hat{A}\hat{S}_g = \hat{S}_g\hat{A}$ should have a form $\hat{A} = \bigoplus_{\rho} (\hat{1} \otimes A_{\rho})$.
- If ρ_1 and ρ_2 are in-equivalent representation of G, and if $|\psi_1\rangle \in \mathfrak{H}_{\rho_1}$ and $|\psi_2\rangle \in \mathfrak{H}_{\rho_2}$, then

 $\langle \psi_1 + \psi_2 | \hat{A} | \psi_1 + \psi_2 \rangle = \langle \psi_1 | \hat{A} | \psi_1 \rangle + \langle \psi_2 | \hat{A} | \psi_2 \rangle.$

Interference term $\langle \psi_1 | \hat{A} | \psi_2 \rangle$ between different sectors vanishes.

Summary

- The superselection rule is derived from the viewpoint of measurement.
- When the object system admits action of a group *G*, if the meter is required to be covariant under the action of *G*, and if the generator of the *G*-action is conserved within the object system, the measurable quantity \hat{A} must satisfy the superselection rule, $\hat{S}_{g}^{\dagger}\hat{A}\hat{S}_{g} = \hat{A}$ or $[\hat{Q}_{\kappa}, \hat{A}] = 0$.
- The superselection rule forbids disturbance of the superselection charge, so it is regarded as an extreme case of the uncertainty relation with additive conservation charge.
- Absence (or non-observability) of interference of different sector is explained.

Remaining problems

- Spontaneous symmetry breaking
- Local gauge symmetry
- Color confinement?

ご清聴ありがとうございました。 Thank you for your attention.