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This talk

. Introduction to the notion of weak
value — formalism

2. Experimental demonstration

. Geometric interpretation of weak
value

. Implication



Weak value

« In 1988, Aharonov, Albert,
Vaidman proposed a notion of
weak value.

e [t is named “weak value” since
it is measured via “weak
measurement”, in which
interaction between an object
and an apparatus is weak.

e It is more sensible to call an Vakir Aharonov
expectation value conditioned -
by a set of an initial state and i e
a final state.


https://history.aip.org/phn/11408012.html
https://history.aip.org/phn/11408012.html

Difference of observable and value

Observables
— admitting algebraic manipulations like
sum, product, and scalar multiplication.
— Products are noncommutative in general.

e [.; + L, = L3 (sum of lengths)
e [ =2nr, S =nmnr? S=1ab
e E=mc? E==2 mv + = kx + mgz

ey 1 .2,1 _ _
H=_—p +2kq, qp —pq = ih
* Sp =Sy +S,



Difference of observable and value

e Value

Measurement of an observable yields a real
number if a unit quantity is defined.

e« ¢(M)=55kg (e : evaluation map)
It is allowed to write M = 55 kg

e It is better to write M - 55 kg or M «
55 kg

e (L) =1.67m



Subtleness of quantum observables

In general,
Value of (sum of observables)
+ Sum of (values of observables)
For example,
e H= ﬁpz + %qu
— Measurement of p yields continuous —co <p <

— Measurement of g yields continuous —o < g <
— However, measurement of H yields disctere

hw (n + %)
* S, =515,
— Individual measurements of §,,S,, yield +1
— However, measurement of S, yields ++/2



Subtleness of quantum observables

In general,
Value of (sum of observables)

# Sum of (values of observables)

Namely,

there is no nontrivial homomorphism
from the noncommutative algebra of
observables to the commutative algebra
of real numbers.



Three kinds of values

iIn quantum theory
1. Eigenvalue (spectral value)
Alp;) = a;|@;)
° {a11a2'a31"°}
e Yield of individual measurement
2. Expectation value
(4) = E[A] = (|Ay)
« Average of accumulated data
3. Weak value

~  (Wfin|A|Wini)
w(d) = (Win|Wini)




Properties of weak value

Weak value
~ _ (Vfin|A|ini)
w(4) = (Yfin | Yini)

—

. Complex number

2. Invariant under arbitrary phase
transformation |y, ) — e%% |y, )

3. Even if 4 has the maximum eigenvalue
amax anNd the minimum eigenvalue ag,jy,,

Amin < Re W(/T) < Amax
does NOT hold in general.



Example of calculation of weak value

Z

>

spin % (2-state system) |Y) = c1|T) + c,|1)

|Yini)

Yini? = 1) L
Yrin) = €|T) + V1 —2|1)  (le] K 1) é\(lwﬁa
~ 0 1 R 0 £<0' £>0

Ux=(1 o)’ aZ:(S —1)

W(,) = (Vfin |0 [Yini) _ V1 — g2 & +oo

(Yein|Yini) £

(e = £0)



Experiments

Filter for polarization of light

I




Polarization filter

selectively permits pass of light

% T




Orthogonal filters

do not permit light pass at all




Polarization filters
Orthogonal filters

Photo by Tanimura



Application of polarization
Liquid crystal display

kg

)




Application of polarization

Sunglasses




Birefringence

Calcite
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Polarization filter on birefringence




Birefringence

Birefringence decomposes light into two
orthogonal polarization components.

Light

air

water




Experimental realization of

weak value 1/3
Almost orthogonal polarization filters

| 2nd filter at the angle 89°

1st filter at the angle 0°

theory : Duck, Stevenson, Sudarshan: Phys. Rev. D (1989)
experiment : Ritchie, Story, G. Hulet: Phys. Rev. Lett. (1991)



https://journals.aps.org/prd/abstract/10.1103/PhysRevD.40.2112
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.66.1107

Experimental realization of

weak value 2/3
Aliment of the birefringent crystal

45°-polarized light is refracted by 1mm
7

"4

135°-polarized light is refracted by 1mm
in the opposite direction



Experimental realization of

weak value 3/3

Insert the birefringent crystal into the
two almost orthogonal filters

intermediate states are 45° and 135°
\ Large refraction
IS observed
(for example 10mm)

4 \

initial state at 0° final state at 89°



Expectation value with nonnegative
probability

Theorem: If A has the maximum eigenvalue

amax anNd the minimum eigenvalue a,j,, It
holds that

Amin = <A> = Amax
Proof: By assumption
Amin = a; = Amax
For probability p; satisfying 0 <p; <1, X;p; =1,

PiGmin = Did; = PiGmax

Amin — E PiAmin = E pia; < E Pimax = Amax
] ] ]



Probabilistic interpretation of weak
value

A l/)fln ‘A wjml
W(A) (l/)fln |1lJm1) Z Pit

If amin < w(4) < apax does not hoId, we must
discard at least one of the two assumptions,
0<p;<1or );p; =1. On the other hand, the
normalization condition

~ (l/)fln ‘ i ‘lplm .
W(l) (l/)fln |1lJm1) Z Pi

holds. Therefore, we must dlscard 0<p; <1.




Model of weak measurement

object: [W)e$H A=Y, all, B=Y,bil,

apparatus: |1) € £, M (meter observable)

composite system: |Y)R|1) € HRL

Interaction: [Y)Q|A) — ﬁg Y)®|A) (g:coupling constant)
We want to know the value of A

We can read only the value of M

The final state |yg,) is an eigenstate |b) of B.

We assume asymptotic behaviorin g - 0

A@ M [M, AM] —_ lhi

Then,



| ee and Tsutsui’s formula for
weak value

Expectation value of the meter observable
conditioned by the yield of the final measurement:

(v@A|0T(1,8M)0]p®4)
(w@2|0T(11,®1)U[p®2)
Sensitivity of the meter

E|M|B = b| =

(p|m,Alp)

d . .
lim —E|M|B =b| = Re

920 dg (| |}
(l/)lﬁb/”l/)) 1 1 o ~ o~ . . ~
i (4 I + Pl 11 )

Lee and Tsutsui, PTEP (2017), Eq. (4.63)



Rewriting the weak value

If the eigenvalue of the final yield is non-
degenerated, I1, = |b}{b| is a projection to 1-dim
eigenspace. In this case, we have

(Y|, Alw)  (w|b)XblAlY)  (blA]Y)  (Vain|A|Yini)

(Wla,[w) — @IbYBIY) — (blYY T WPpnlPin)

The formula of Lee and Tsutsui is reduced to
the formula of Aharanov-Albert-Vaidman.



Rewriting the weak value 2

By putting 4 = Y, all, into,

(Wi, )
Probability formula of Born
P[B = b| = (y|y[)
Pseudoprobability of Kirkwood-Dirac (complex number)
P[/T =q,B = b] = (l/)lﬁbﬁa|llj>
Conditional probability

(p|dpAlp) (p|i,0, )
2.° AT,

a

P[/T =a,B = b]
P|B = b|

P[A=a|B=b|:=



Geometric interpretation of the
Born probability

P[B = b] = (y|M,|) = @WIb)DbIY) # [(bl)|?

- )
N \
@
<§§J {)Q The scale of the vector that is
9 . .
S £ projected twice is equal to the
N o
9 Q Born probability.



Geometric interpretation of the
Kirkwood-Dirac pseudoprobability

P[A = a, B = b] = (Y|, 11 |[) = (WIb)(bla)alp)

)

N
2\(\(@6\0 D \
c@c’Q S The coefficient of the vector
5\)\0696 gb projected three times is equal
<§§ to the pseudoprobability
(%)



When the pseudoprobability
becomes negative

P[A = a, B = b] = (Y|, 11 |[) = Wib)bla)al)

V)
Feo)
2, N
2 AN
(W) Q
& >
2 &
ENVZi
W) |b)bla)alp) " subspace spanned by |

)

The coefficient of the vector / |
projected three times is equal
to the pseudoprobability
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When the pseudoprobability

becomes negative

« Commutative self-adjoint operators are
simultaneously diagonalizable.

* Their eigenspaces are mutually parallel

or orthogonal.
e The associated

projections are

commutative and their product is also

projection.
 The joint proba

(‘/)‘ﬁbﬁah/’) = (1/J

nonnegative.

ility P[A =a,B = b| =

1,00, |y) is real and



When the pseudoprobability

becomes negative?

« Noncommutative self-adjoint operators are
not simultaneously diagonalizable.

e Their eigensubspaces are neither parallel nor
orthogonal.

e It is possible to
invert the direction of
vectors by a [Y)lb)(bla)alp)
sequential operations |
of non-orthogonal
projections.




Necessary condition for obtaining

negative pseudoprobability

» The object observable 4 is weakly
measured at the intermediate state.

« The object observable B is projectively
measured at the final state.

e It is necessary for obtaining negative
pseudoprobability that the two

observables 4 and B are
noncommutative.



Negative probability induces
amplification of weak value

« Expectation value = weighted average of
spectral values

« If weights are positive, average is an internal
dividing point.

« If some of weights are negative, average is
an outer dividing point.

_1 _2 _—1 _3
P1—3 P2—3 P1—2 Pz—z

® & o ® e o

a1 T a a ar T



Understanding aided by
pseudoprobability

 Violation of Bell’s inequality (Fine's
theorem)

« Complex pseudoprobability causes the
Pancharatnam phase.

« Joint probabilities for initial,
intermediate, and final states may
define quantum stochastic process. But
not yet fully discussed.
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Thank you for your attention
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